深入理解机器学习与极大似然之间的联系

似然函数:事件A的发生含着有许多其它事件的发生。所以我就把这些其它事件发生的联合概率来作为事件A的概率,也就是似然函数。数据类型的不同(离散型和连续性)就有不同的似然函数

极大似然极大似然估计方法(Maximum Likelihood Estimate,MLE):那就是让这个似然函数的最大,目的是解决模型已定,参数未知的问题

可以发现,机器学习本身也是一种由数据(有标签或无标签)推测模型的过程,与极大似然估计十分类似。粗糙点说,极大似然的概率密度函数就像是机器学习的算法,要用偏导求得的参数就相当于机器学习里的参数(不是超参数,虽然有些算法只有超参数,这是一个大概的理解

相关推荐
人工智能AI技术8 分钟前
GitHub Copilot免费替代方案:大学生如何用CodeGeeX+通义灵码搭建AI编程环境
人工智能
Chunyyyen9 分钟前
【第三十四周】视觉RAG01
人工智能·chatgpt
是枚小菜鸡儿吖11 分钟前
CANN 算子开发黑科技:AI 自动生成高性能 Kernel 代码
人工智能·科技
hqyjzsb17 分钟前
盲目用AI提效?当心陷入“工具奴”陷阱,效率不增反降
人工智能·学习·职场和发展·创业创新·学习方法·业界资讯·远程工作
Eloudy24 分钟前
用 Python 直写 CUDA Kernel的技术,CuTile、TileLang、Triton 与 PyTorch 的深度融合实践
人工智能·pytorch
神的泪水25 分钟前
CANN 实战全景篇:从零构建 LLM 推理引擎(基于 CANN 原生栈)
人工智能
yuanyuan2o226 分钟前
【深度学习】全连接、卷积神经网络
人工智能·深度学习·cnn
八零后琐话31 分钟前
干货:Claude最新大招Cowork避坑!
人工智能
汗流浃背了吧,老弟!1 小时前
BPE 词表构建与编解码(英雄联盟-托儿索语料)
人工智能·深度学习