深入理解机器学习与极大似然之间的联系

似然函数:事件A的发生含着有许多其它事件的发生。所以我就把这些其它事件发生的联合概率来作为事件A的概率,也就是似然函数。数据类型的不同(离散型和连续性)就有不同的似然函数

极大似然极大似然估计方法(Maximum Likelihood Estimate,MLE):那就是让这个似然函数的最大,目的是解决模型已定,参数未知的问题

可以发现,机器学习本身也是一种由数据(有标签或无标签)推测模型的过程,与极大似然估计十分类似。粗糙点说,极大似然的概率密度函数就像是机器学习的算法,要用偏导求得的参数就相当于机器学习里的参数(不是超参数,虽然有些算法只有超参数,这是一个大概的理解

相关推荐
九章云极AladdinEdu39 分钟前
GPU与NPU异构计算任务划分算法研究:基于强化学习的Transformer负载均衡实践
java·开发语言·人工智能·深度学习·测试工具·负载均衡·transformer
量子-Alex42 分钟前
【目标检测】RT-DETR
人工智能·目标检测·计算机视觉
2201_7549184142 分钟前
OpenCV 图像透视变换详解
人工智能·opencv·计算机视觉
羽星_s1 小时前
文本分类任务Qwen3-0.6B与Bert:实验见解
人工智能·bert·文本分类·ai大模型·qwen3
摸鱼仙人~1 小时前
TensorFlow/Keras实现知识蒸馏案例
人工智能·tensorflow·keras
浊酒南街1 小时前
TensorFlow之微分求导
人工智能·python·tensorflow
羽凌寒1 小时前
曝光融合(Exposure Fusion)
图像处理·人工智能·计算机视觉
lucky_lyovo1 小时前
机器学习-特征工程
人工智能·机器学习
alpszero1 小时前
YOLO11解决方案之对象裁剪探索
人工智能·python·计算机视觉·yolo11
Matlab仿真实验室2 小时前
基于Matlab实现图像透明叠加程序
人工智能·计算机视觉·matlab