深入理解机器学习与极大似然之间的联系

似然函数:事件A的发生含着有许多其它事件的发生。所以我就把这些其它事件发生的联合概率来作为事件A的概率,也就是似然函数。数据类型的不同(离散型和连续性)就有不同的似然函数

极大似然极大似然估计方法(Maximum Likelihood Estimate,MLE):那就是让这个似然函数的最大,目的是解决模型已定,参数未知的问题

可以发现,机器学习本身也是一种由数据(有标签或无标签)推测模型的过程,与极大似然估计十分类似。粗糙点说,极大似然的概率密度函数就像是机器学习的算法,要用偏导求得的参数就相当于机器学习里的参数(不是超参数,虽然有些算法只有超参数,这是一个大概的理解

相关推荐
ModestCoder_几秒前
ROS Bag与导航数据集技术指南
开发语言·人工智能·自然语言处理·机器人·具身智能
海边夕阳200617 分钟前
【每天一个AI小知识】:什么是循环神经网络?
人工智能·经验分享·rnn·深度学习·神经网络·机器学习
2501_9181269124 分钟前
如何用ai做开发
人工智能
f***a34634 分钟前
开源模型应用落地-工具使用篇-Spring AI-高阶用法(九)
人工智能·spring·开源
用户51914958484536 分钟前
BBDown:高效便捷的哔哩哔哩视频下载工具
人工智能·aigc
CV实验室38 分钟前
CV论文速递:覆盖视频生成与理解、3D视觉与运动迁移、多模态与跨模态智能、专用场景视觉技术等方向 (11.17-11.21)
人工智能·计算机视觉·3d·论文·音视频·视频生成
●VON39 分钟前
AI不能做什么?澄清常见误解
人工智能
数据堂官方账号1 小时前
行业洞见 | AI鉴伪:数据驱动的数字安全变革
人工智能·安全
能鈺CMS1 小时前
内容付费系统全面解析:构建知识变现体系的最强工具(2025 SEO 深度专题)
大数据·人工智能·html
Salt_07281 小时前
DAY 19 数组的常见操作和形状
人工智能·python·机器学习