深入理解机器学习与极大似然之间的联系

似然函数:事件A的发生含着有许多其它事件的发生。所以我就把这些其它事件发生的联合概率来作为事件A的概率,也就是似然函数。数据类型的不同(离散型和连续性)就有不同的似然函数

极大似然极大似然估计方法(Maximum Likelihood Estimate,MLE):那就是让这个似然函数的最大,目的是解决模型已定,参数未知的问题

可以发现,机器学习本身也是一种由数据(有标签或无标签)推测模型的过程,与极大似然估计十分类似。粗糙点说,极大似然的概率密度函数就像是机器学习的算法,要用偏导求得的参数就相当于机器学习里的参数(不是超参数,虽然有些算法只有超参数,这是一个大概的理解

相关推荐
黎燃12 分钟前
AI驱动的供应链管理:需求预测实战指南
人工智能
天波信息技术分享21 分钟前
AI云电脑盒子技术分析——从“盒子”到“算力云边缘节点”的跃迁
人工智能·电脑
CoderJia程序员甲34 分钟前
GitHub 热榜项目 - 日榜(2025-08-16)
人工智能·ai·开源·github
KirkLin35 分钟前
Kirk:练习时长两年半的AI Coding经验
人工智能·程序员·全栈
mit6.82441 分钟前
[1Prompt1Story] 注意力机制增强 IPCA | 去噪神经网络 UNet | U型架构分步去噪
人工智能·深度学习·神经网络
挽淚1 小时前
(小白向)什么是Prompt,RAG,Agent,Function Calling和MCP ?
人工智能·程序员
Jina AI1 小时前
回归C++: 在GGUF上构建高效的向量模型
人工智能·算法·机器学习·数据挖掘·回归
科大饭桶2 小时前
昇腾AI自学Day2-- 深度学习基础工具与数学
人工智能·pytorch·python·深度学习·numpy
什么都想学的阿超2 小时前
【大语言模型 02】多头注意力深度剖析:为什么需要多个头
人工智能·语言模型·自然语言处理
努力还债的学术吗喽2 小时前
2021 IEEE【论文精读】用GAN让音频隐写术骗过AI检测器 - 对抗深度学习的音频信息隐藏
人工智能·深度学习·生成对抗网络·密码学·音频·gan·隐写