使用pytorch,冻结resnet50前几层进行迁移学习

在PyTorch中,冻结ResNet50模型的前几层可以通过以下步骤进行:

python 复制代码
import torch
import torchvision.models as models

# 加载预训练的ResNet50模型
model = models.resnet50(pretrained=True)

# 冻结需要保持不变的层,通常是前几个卷积层
for name, param in model.named_parameters():
    if 'conv1' in name or 'bn1' in name or 'layer1' in name or 'layer2' in name:
        param.requires_grad = False

# 修改最后一层进行微调
num_classes = 10  # 假设输出类别数为10
model.fc = torch.nn.Linear(model.fc.in_features, num_classes)

# 将模型移到GPU上(如果可用)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# 编译和训练模型
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

# 训练模型
for epoch in range(num_epochs):
    running_loss = 0.0
    for inputs, labels in train_loader:
        inputs = inputs.to(device)
        labels = labels.to(device)

        optimizer.zero_grad()

        # 前向传播
        outputs = model(inputs)
        loss = criterion(outputs, labels)

        # 反向传播和优化
        loss.backward()
        optimizer.step()

        running_loss += loss.item()

    # 打印每个epoch的损失值
    print(f"Epoch {epoch+1} Loss: {running_loss/len(train_loader)}")

在这个例子中,我们加载了预训练的ResNet50模型,并将指定的层参数设置为不需要梯度更新。具体来说,我们冻结了conv1bn1layer1layer2这些层的参数。然后,通过修改最后一层(全连接层)来适应自己的数据集。接下来,将模型移动到GPU上(如果可用),定义损失函数和优化器,并进行模型训练。

请根据你自己的数据集和任务适当调整代码。

相关推荐
仗剑_走天涯38 分钟前
基于pytorch.nn模块实现线性模型
人工智能·pytorch·python·深度学习
cnbestec2 小时前
协作机器人UR7e与UR12e:轻量化设计与高负载能力助力“小而美”智造升级
人工智能·机器人·协作机器人·ur协作机器人·ur7e·ur12e
zskj_zhyl2 小时前
毫米波雷达守护银发安全:七彩喜跌倒检测仪重构居家养老防线
人工智能·安全·重构
gaosushexiangji3 小时前
利用sCMOS科学相机测量激光散射强度
大数据·人工智能·数码相机·计算机视觉
ai小鬼头4 小时前
AIStarter新版重磅来袭!永久订阅限时福利抢先看
人工智能·开源·github
说私域4 小时前
从品牌附庸到自我表达:定制开发开源AI智能名片S2B2C商城小程序赋能下的营销变革
人工智能·小程序
飞哥数智坊5 小时前
新版定价不够用,Cursor如何退回旧版定价
人工智能·cursor
12点一刻5 小时前
搭建自动化工作流:探寻解放双手的有效方案(2)
运维·人工智能·自动化·deepseek
未来之窗软件服务5 小时前
东方仙盟AI数据中间件使用教程:开启数据交互与自动化应用新时代——仙盟创梦IDE
运维·人工智能·自动化·仙盟创梦ide·东方仙盟·阿雪技术观
JNU freshman6 小时前
计算机视觉速成 之 概述
人工智能·计算机视觉