使用pytorch,冻结resnet50前几层进行迁移学习

在PyTorch中,冻结ResNet50模型的前几层可以通过以下步骤进行:

python 复制代码
import torch
import torchvision.models as models

# 加载预训练的ResNet50模型
model = models.resnet50(pretrained=True)

# 冻结需要保持不变的层,通常是前几个卷积层
for name, param in model.named_parameters():
    if 'conv1' in name or 'bn1' in name or 'layer1' in name or 'layer2' in name:
        param.requires_grad = False

# 修改最后一层进行微调
num_classes = 10  # 假设输出类别数为10
model.fc = torch.nn.Linear(model.fc.in_features, num_classes)

# 将模型移到GPU上(如果可用)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# 编译和训练模型
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

# 训练模型
for epoch in range(num_epochs):
    running_loss = 0.0
    for inputs, labels in train_loader:
        inputs = inputs.to(device)
        labels = labels.to(device)

        optimizer.zero_grad()

        # 前向传播
        outputs = model(inputs)
        loss = criterion(outputs, labels)

        # 反向传播和优化
        loss.backward()
        optimizer.step()

        running_loss += loss.item()

    # 打印每个epoch的损失值
    print(f"Epoch {epoch+1} Loss: {running_loss/len(train_loader)}")

在这个例子中,我们加载了预训练的ResNet50模型,并将指定的层参数设置为不需要梯度更新。具体来说,我们冻结了conv1bn1layer1layer2这些层的参数。然后,通过修改最后一层(全连接层)来适应自己的数据集。接下来,将模型移动到GPU上(如果可用),定义损失函数和优化器,并进行模型训练。

请根据你自己的数据集和任务适当调整代码。

相关推荐
共绩算力36 分钟前
OpenAI Whisper 语音识别模型:技术与应用全面分析
人工智能·whisper·语音识别·共绩算力
工藤学编程1 小时前
零基础学AI大模型之Stream流式输出实战
人工智能
不良人龍木木1 小时前
机器学习-常用库
人工智能·机器学习
罗橙7号1 小时前
【pyTorch】关于PyTorch的高级索引机制理解
人工智能·pytorch·python
rengang661 小时前
09-随机森林:介绍集成学习中通过多决策树提升性能的算法
人工智能·算法·随机森林·机器学习·集成学习
zskj_qcxjqr2 小时前
数字大健康浪潮下:智能设备重构人力生态,传统技艺如何新生?
大数据·人工智能·科技·机器人
动能小子ohhh2 小时前
AI智能体(Agent)大模型入门【9】--如何在pycharm等其他编译软件调用ocr工具【只写后端代码不演示】
人工智能·python·深度学习·机器学习·pycharm·ocr
mit6.8242 小时前
[Tongyi] 工具集成 | run_react_infer
人工智能·深度学习·算法
无锡布里渊2 小时前
分布式光纤声波振动传感:守护智慧城市燃气管网安全的 “神经末梢”
人工智能·安全·智慧城市
过往入尘土2 小时前
Linux:虚拟世界的大门
linux·人工智能