RTT(RT-Thread)时钟管理

目录

时钟管理

时钟节拍

RTT工程目录结构介绍

配置文件:rtconfig.h

获取系统节拍

获取系统节拍数函数

实例

定时器

RT_Thread定时器介绍

定时器源码分析(了解即可)

rt_system_timer_init (硬件定时器初始化)

rt_system_timer_thread_init(软件定时器初始化)

总结

定时器工作机制

定时器相关接口

启动和停止定时器

动态创建定时器

创建定时器

删除定时器

实例

静态创建定时器

初始化定时器

脱离定时器

实例

控制定时器

实例

高精度延时


时钟管理

操作系统需要通过时间来规范其任务,本章主要介绍时钟节拍和基于时钟节拍的定时器。

时钟节拍

任何操作系统都需要提供一个时钟节拍,以供系统处理所有和时间有关的事件,如线程的延时、线程的时间片轮转调度以及定时器超时等。

RT-Thread 中,时钟节拍的长度可以根据 RT_TICK_PER_SECOND 的定义来调整。 rtconfig.h配置文件中定义:

cpp 复制代码
/* 
 *频率是1000HZ 周期是1/1000 s
 *所以节拍是1ms
 */
#define RT_TICK_PER_SECOND 1000

RTT工程目录结构介绍

配置文件:rtconfig.h

其中包括了内核相关的配置、内部线程通信配置、内存管理、内核设备对象、RTT组件、C++特性、设备驱动和USB配置等等

时钟节拍配置属于内核相关配置,默认配置为1000,表示1000Hz,一次节拍为1ms

系统滴答定时器中断处理函数(每1ms触发一次systick定时器中断):每一次发生中断都会进入中断处理函数

我们可以通过启动文件的中断向量表中进入

cpp 复制代码
void SysTick_Handler(void)
{
    /* enter interrupt */
    rt_interrupt_enter();

    HAL_IncTick();
    rt_tick_increase();// ++ rt_tick:全局变量自加,
                       //记录的是系统从启动到现在的时间节拍数

    /* leave interrupt */
    rt_interrupt_leave();
}

获取系统节拍

获取系统节拍数函数

cpp 复制代码
/**
 * This function will return current tick fromoperating system startup
 *
 * @return current tick
 */
rt_tick_t rt_tick_get(void)

实例

通过获取系统节拍数来验证时钟节拍1ms一次

cpp 复制代码
... ...
int main(void)
{

    int i=0;
    rt_tick_t tick=0;
    for(i=0;i<10;i++)
    {
        tick = rt_tick_get();
        rt_kprintf("tick:%u\n",tick);
        rt_thread_mdelay(500);
    }
    return RT_EOK;
}

运行结果:

通过结果可以验证时钟节拍确实为1ms一次

如果我们将频率改为10000Hz,即100ms一个节拍

修改会导致程序出现警告:division by zero 除数是0

但并不影响运行结果

定时器

定时器,是指从指定的时刻开始,经过一定的指定时间后触发一个事件,定时器有硬件定时器和软件定时器之分:

硬件定时器: 芯片本身提供的定时功能。一般是由外部晶振提供给芯片输入时钟,芯片向软件模块提供一组配置寄存器,接受控制输入,到达设定时间值后芯片中断控制器产生时钟中断。如果用硬件定时器,触发中断以后进行的处理中断函数属于中断上下文。硬件定时器的精度一般很高,可以达到纳秒级别,并且是中断触发方式。

软件定时器: 由操作系统提供的一类系统接口,它构建在硬件定时器基础之上,使系统能够提供不受数目限制的定时器服务。软件定时器触发的中断回调函数属于线程上下文。

RT-Thread操作系统提供软件实现的定时器,以时钟节拍(OS Tick)的时间长度为单位,即定时数值必须是OS Tick的整数倍

RT_Thread定时器介绍

RT-Thread 的定时器提供两类定时器机制:

  • 第一类是单次触发定时器,这类定时器在启动后只会触发一次定时器事件,然后定时器自动停止。
  • 第二类是周期触发定时器,这类定时器会周期性的触发定时器事件,直到用户手动的停止,否则将永远持续执行下去

根据定时器超时函数执行时所处的上下文环境,RT-Thread的定时器可以分为HARD_TIMER模式和SOFT_TIMER模式。

HARD_TIMER模式:中断上下文

定时器超时函数的要求:执行时间应该尽量短(减少对正常执行程序的影响),执行时不应导致当前上下文挂起、等待。例如在中断上下文中执行的超时函数它不应该试图去申请动态内存、释放动态内存等

SOFT_TIMER模式:线程上下文

该模式被启用后,系统会在初始化时创建一个 timer 线程,然后 SOFT_TIMER 模式的定时器超时函数在都会在timer线程的上下文环境中执行

定时器源码分析(了解即可)

(1) RT-Thread OS启动阶段,执行rtthread_startup函数,在该函数中调用了定时器初始化函数

cpp 复制代码
/* timer system initialization */
rt_system_timer_init();

/* timer thread initialization */
rt_system_timer_thread_init();

rt_system_timer_init (硬件定时器初始化)

cpp 复制代码
/**
 * @ingroup SystemInit
 *
 * This function will initialize system timer
 */
void rt_system_timer_init(void)
{
    int i;

    for (i = 0; i < sizeof(rt_timer_list) / sizeof(rt_timer_list[0]); i++)
    {
        rt_list_init(rt_timer_list + i);
    }
}

转到rt_list_init()函数定义处,可以发现在RTT中,内核是通过双向列表的方式来管理定时器的

再转到链表定义处,我们可知rt_system_timer_init初始化的是硬件定时器的列表

rt_system_timer_thread_init(软件定时器初始化)

cpp 复制代码
/**
 * @ingroup SystemInit
 *
 * This function will initialize system timer thread
 */
void rt_system_timer_thread_init(void)
{
#ifdef RT_USING_TIMER_SOFT
    int i;

    for (i = 0;
         i < sizeof(rt_soft_timer_list) / sizeof(rt_soft_timer_list[0]);
         i++)
    {
        rt_list_init(rt_soft_timer_list + i);
    }

    /* start software timer thread */
    rt_thread_init(&timer_thread,
                   "timer",
                   rt_thread_timer_entry,
                   RT_NULL,
                   &timer_thread_stack[0],
                   sizeof(timer_thread_stack),
                   RT_TIMER_THREAD_PRIO,
                   10);

    /* startup */
    rt_thread_startup(&timer_thread);
#endif
}

从开始的rt_list_init(rt_soft_timer_list + i);中我们可知软件定时器初始化还是先初始化了一个定时器列表,不过传参传的是软件定时器的列表

转到定义处

然后初静态创建定时器并启动

启动完成后会执行线程处理函数rt_thread_timer_entry();

在while(1)中,做了一个超时检测,如果超时则表示软件定时器不存在,则将软件定时器线程挂起,让CPU调度其它线程。否则执行定时器的正常功能。

cpp 复制代码
/* system timer thread entry */
static void rt_thread_timer_entry(void *parameter)
{
    rt_tick_t next_timeout;

    while (1)
    {
        /* get the next timeout tick */
        next_timeout = rt_timer_list_next_timeout(rt_soft_timer_list);
        if (next_timeout == RT_TICK_MAX)
        {
            /* no software timer exist, suspend self. */
            rt_thread_suspend(rt_thread_self());
            rt_schedule();
        }
        else
        {
            rt_tick_t current_tick;

            /* get current tick */
            current_tick = rt_tick_get();

            if ((next_timeout - current_tick) < RT_TICK_MAX / 2)
            {
                /* get the delta timeout tick */
                next_timeout = next_timeout - current_tick;
                rt_thread_delay(next_timeout);
            }
        }

        /* check software timer */
        rt_soft_timer_check();
    }
}

总结

内核在管理定时器的时候,将定时器分为了两类,一类是硬件定时器,一类是软件定时器,分别挂在不同的列表上进行管理。

定时器工作机制

下面以一个例子来说明 RT-Thread 定时器的工作机制。在 RT-Thread 定时器模块中维护着两个重要的全局变量:

  • 当前系统经过的 tick 时间 rt_tick(当硬件定时器中断来临时,它将加 1) ;
  • 定时器链表 rt_timer_list。系统新创建并激活的定时器都会按照以超时时间排序的方式插入到rt_timer_list 链表中。

如下图所示,系统当前tick值为20,在当前系统中已经创建并启动了三个定时器,分别是定时时间为50个tick的Timer1、100个tick的Timer2和500个tick的Timer3,这三个定时器分别加上系统

当前时间 rt_tick=20,从小到大排序链接在 rt_timer_list 链表中,形成如图所示的定时器链表结构。

而 rt_tick 随着硬件定时器的触发一直在增长(每一次硬件定时器中断来临,rt_tick 变量会加 1) ,50个tick以后,rt_tick从20增长到70,与Timer1的timeout值相等,这时会触发与Timer1定时器相关联的超时函数,同时将Timer1从rt_timer_list链表上删除。同理,100个tick和500个tick过去后,与Timer2 和 Timer3 定时器相关联的超时函数会被触发,接着将 Time2 和 Timer3 定时器从 rt_timer_list链表中删除。

如果系统当前定时器状态在 10 个 tick 以后(rt_tick=30)有一个任务新创建了一个 tick 值为 300 的Timer4定时器,由于Timer4定时器的timeout=rt_tick+300=330,因此它将被插入到Timer2和Timer3定时器中间,形成如下图所示链表结构:

定时器相关接口

启动和停止定时器

cpp 复制代码
/**
 * This function will start the timer
 *
 * @param timer the timer to be started
 *
 * @return the operation status, RT_EOK on OK,-RT_ERROR on error
 */
 rt_err_t rt_timer_start(rt_timer_t timer)

若想使它停止,可以使用下面的函数接口:

cpp 复制代码
/**
 * This function will stop the timer
 *
 * @param timer the timer to be stopped
 *
 * @return the operation status, RT_EOK on OK,-RT_ERROR on error
 */
 rt_err_t rt_timer_stop(rt_timer_t timer)

动态创建定时器

动态创建一个定时器和删除定时器

创建定时器

其中参数2:指向定时超时的回调函数(定时器中断函数),来处理当前的超时事件

参数3:为传递给超时函数的参数

参数4:为定时器时间,单位为节拍数

cpp 复制代码
/**
 * This function will create a timer
 *
 * @param name the name of timer
 * @param timeout the timeout function
 * @param parameter the parameter of timeoutfunction
 * @param time the tick of timer
 * @param flag the flag of timer
 * #define RT_TIMER_FLAG_ONE_SHOT         0x0             /**< one shot timer */
* #define RT_TIMER_FLAG_PERIODIC           0x2            /**< periodic timer */
* #define RT_TIMER_FLAG_HARD_TIMER      0x0             /**< hard timer,the timer's callbackfunction will be called in tick isr. */
* #define RT_TIMER_FLAG_SOFT_TIMER       0x4           /**< soft timer,the timer's callback function will be called in timerthread. */
* @return the created timer object
*/
rt_timer_t rt_timer_create(const char*name,
                           void (*timeout)(void*parameter),
                           void       *parameter,
                           rt_tick_t   time,
                           rt_uint8_t  flag)

其中flag可以传入以下标志

RT_TIMER_FLAG_ONE_SHOT表示单次触发

RT_TIMER_FLAG_PERIODIC表示周期性的触发

返回值为一个结构体指针

结构体描述当前定时器的信息

删除定时器

传入参数为定时器的结构体指针,返回值为错误码:正确为RT_EOK,错误为负的RT_ERROR

cpp 复制代码
/**
 * This function will delete a timer andrelease timer memory
 *
 * @param timer the timer to be deleted
 *
 * @return the operation status, RT_EOK on OK;-RT_ERROR on error
 */
rt_err_t rt_timer_delete(rt_timer_t timer)
实例

首先对动态创建定时器函数进行参数配置,其中标志使用了周期性触发和使用软件定时器。然后定义中断函数,创建一个定时器结构体指针来接收返回值,如果创建失败就返回-没有内存

运行效果

其中timer里面显示了四个定时器,包括了自己创建的tm_demo,处于deactivated未活动的状态,其它三个定时器为系统创建的tshell、tidle0和timer

完善超时处理函数的内容,3s打印一次数据;启动定时器

运行效果

可以发现定时器状态已经开启

静态创建定时器

初始化定时器
cpp 复制代码
/**
 * This function will initialize a timer,normally this function is used to
 * initialize a static timer object.
 *
 * @param timer the static timer object  (typedef struct rt_timer *rt_timer_t;)
 * @param name the name of timer
 * @param timeout the timeout function
 * @param parameter the parameter of timeoutfunction
 * @param time the tick of timer
 * @param flag the flag of timer
 */
void rt_timer_init(rt_timer_t  timer,
                   const char *name,
                   void (*timeout)(void*parameter),
                   void       *parameter,
                   rt_tick_t   time,
                   rt_uint8_t  flag)
脱离定时器

静态定时器不需要再使用时,可以使用下面的函数接口脱离定时器:

cpp 复制代码
/**
 * This function will detach a timer from timermanagement.
 *
 * @param timer the static timer object
 *
 * @return the operation status, RT_EOK on OK;RT_ERROR on error
 */
rt_err_t rt_timer_detach(rt_timer_ttimer)
实例

运行结果

当前时间节拍数

控制定时器
cpp 复制代码
/**
 * This function will get or set some optionsof the timer
 *
 * @param timer the timer to be get or set
 * @param cmd the control command
 * @param arg the argument
 * #define RT_TIMER_CTRL_SET_TIME          0x0            /**< set timer control command*/
 * #define RT_TIMER_CTRL_GET_TIME          0x1            /**< get timer control command*/
 * #define RT_TIMER_CTRL_SET_ONESHOT       0x2            /**< change timer to one shot */
* #defineRT_TIMER_CTRL_SET_PERIODIC        0x3            /**< change timer to periodic*/
* @return RT_EOK
*/
rt_err_t rt_timer_control(rt_timer_t timer, int cmd, void *arg)
实例

以重新设置定时器时间为例,15s中后修改定时节拍数为1000

高精度延时

注意:这个函数只支持低于1个OS Tick(系统节拍)的延时, 否则SysTick会出现溢出而不能够获得指定的延时时间

一般用于IIC、SPI等总线通信

cpp 复制代码
/**
 * This function will delay for some us.
 *
 * @param us the delay time of us
 */
void rt_hw_us_delay(rt_uint32_t us)
相关推荐
m0_748254093 分钟前
STM32--超声波模块(HC—SR04)(标准库+HAL库)
stm32·单片机·嵌入式硬件
逝灮25 分钟前
【蓝桥杯——物联网设计与开发】基础模块8 - RTC
stm32·单片机·嵌入式硬件·mcu·物联网·蓝桥杯·rtc
不过四级不改名67712 小时前
蓝桥杯嵌入式备赛教程(1、led,2、lcd,3、key)
stm32·嵌入式硬件·蓝桥杯
小A15912 小时前
STM32完全学习——SPI接口的FLASH(DMA模式)
stm32·嵌入式硬件·学习
超级码农ProMax15 小时前
STM32——“SPI Flash”
stm32·单片机·嵌入式硬件
Asa31916 小时前
stm32点灯Hal库
stm32·单片机·嵌入式硬件
end_SJ18 小时前
初学stm32 --- 外部中断
stm32·单片机·嵌入式硬件
嵌入式小强工作室19 小时前
stm32 查找进硬件错误方法
stm32·单片机·嵌入式硬件
wenchm20 小时前
细说STM32F407单片机DMA方式读写SPI FLASH W25Q16BV
stm32·单片机·嵌入式硬件
逝灮20 小时前
【蓝桥杯——物联网设计与开发】拓展模块4 - 脉冲模块
stm32·单片机·嵌入式硬件·mcu·物联网·蓝桥杯·脉冲测量