【多重信号分类】超分辨率测向方法——依赖于将观测空间分解为噪声子空间和源/信号子空间的方法具有高分辨率(HR)并产生准确的估计(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

****🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️**座右铭:**行百里者,半于九十。

📋📋📋++本文目录如下:++🎁🎁🎁

目录

[💥1 概述](#💥1 概述)

[📚2 运行结果](#📚2 运行结果)

[🎉3 参考文献](#🎉3 参考文献)

[🌈4 Matlab代码实现](#🌈4 Matlab代码实现)


💥1 概述

MUSIC(多重信号分类)是最早提出的超分辨率测向方法之一,也是一种非常流行的方法。这些依赖于将观测空间分解为噪声子空间和源/信号子空间的方法已被证明具有高分辨率(HR)能力并产生准确的估计。

超分辨率测向方法是一种用于多重信号分类的技术,它通过将观测空间分解为噪声子空间和源/信号子空间的方法来实现高分辨率(HR)并产生准确的估计。以下是对超分辨率测向方法的描述:

  1. 数据准备:收集包含多个信号源的观测数据。这些观测数据可以是通过阵列天线收集到的信号。

  2. 信号子空间和噪声子空间分解:利用信号处理方法,将观测数据分解为信号子空间和噪声子空间。这通常涉及到计算协方差矩阵或相关矩阵,并通过特征值分解或奇异值分解来获取信号子空间和噪声子空间。

  3. 估计信号:在信号子空间中进行信号估计。利用子空间投影方法,对噪声进行抑制,从而使得在高信噪比下可以准确地估计信号的参数,如到达角度、频率等。

  4. 超分辨率重建:利用估计的信号参数,对信号进行超分辨率重建。这可以通过插值方法、波束赋形(beamforming)等技术来实现高分辨率。超分辨率重建可以提升信号的空间分辨率,从而更准确地确定信号的来源。

通过以上步骤,超分辨率测向方法可以实现对多重信号的分类和识别。这种方法利用信号和噪声之间的区别,将信号子空间中的信号成分提取出来,并利用这些信号成分重建高分辨率的信号。这样可以提高信号的可分辨性和分类准确性。

📚 2 运行结果

可视化代码:

Pmusic = real(10*log10(Pmusic)); %Spatial Spectrum function

pks,locs\] = findpeaks(Pmusic,theta,'SortStr','descend','Annotate','extents'); MUSIC_Estim = sort(locs(1:K)) figure; plot(theta,Pmusic,'-b',locs(1:K),pks(1:K),'r\*'); hold on text(locs(1:K)+2\*sign(locs(1:K)),pks(1:K),num2str(locs(1:K)')) xlabel('Angle \\theta (degree)'); ylabel('Spatial Power Spectrum P(\\theta) (dB)') title('DOA estimation based on MUSIC algorithm ') xlim(\[min(theta) max(theta)\]) grid on ## ****🎉3**** ****参考文献**** > 部分理论来源于网络,如有侵权请联系删除。 \[1\]陈佳. 基于多重信号分类算法的阵列式图像扫描超分辨显微成像方法研究\[D\].哈尔滨工业大学,2022.DOI:10.27061/d.cnki.ghgdu.2022.003179. \[2\]肖彩妮. 基于多重信号分类算法的超分辨显微成像技术研究\[D\].哈尔滨工业大学,2021.DOI:10.27061/d.cnki.ghgdu.2021.001858. \[3\]于玮. 智能优化多重信号分类的无人机测向技术研究及应用\[D\].中国石油大学(华东),2020.DOI:10.27644/d.cnki.gsydu.2020.001591. ## [🌈](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=Mzk0MDMzNzYwOA==&action=getalbum&album_id=2591810113208958977#wechat_redirect "🌈")****4 Matlab代码实现****

相关推荐
腾讯云开发者28 分钟前
腾讯云TVP走进美的,共探智能制造新范式
人工智能
一水鉴天29 分钟前
整体设计 逻辑系统程序 之34七层网络的中台架构设计及链路对应讨论(含 CFR 规则与理 / 事代理界定)
人工智能·算法·公共逻辑
我星期八休息35 分钟前
C++智能指针全面解析:原理、使用场景与最佳实践
java·大数据·开发语言·jvm·c++·人工智能·python
ECT-OS-JiuHuaShan40 分钟前
《元推理框架技术白皮书》,人工智能领域的“杂交水稻“
人工智能·aigc·学习方法·量子计算·空间计算
minhuan44 分钟前
构建AI智能体:六十八、集成学习:从三个臭皮匠到AI集体智慧的深度解析
人工智能·机器学习·adaboost·集成学习·bagging
ssshooter1 小时前
MCP 服务 Streamable HTTP 和 SSE 的区别
人工智能·面试·程序员
rengang661 小时前
软件工程新纪元:AI协同编程架构师的修养与使命
人工智能·软件工程·ai编程·ai协同编程架构师
IT_陈寒1 小时前
Python+AI实战:用LangChain构建智能问答系统的5个核心技巧
前端·人工智能·后端
亚马逊云开发者2 小时前
Amazon Bedrock AgentCore Memory:亚马逊云科技的托管记忆解决方案
人工智能
言之。2 小时前
Chroma 开源的 AI 应用搜索与检索数据库(即向量数据库)
数据库·人工智能·开源