flink kafka消费者如何处理kafka主题的rebalance

背景:

我们日常使用kafka客户端消费kafka主题的消息时,当消费者退出/加入消费者组,kafka主题分区数有变等事件发生时,都会导致rebalance的发生,此时一般情况下,如果我们不自己处理offset,我们不需要理会这个rebalance的,当rebalance完成后,每个消费者会从__consumer_offsets中获取每个消费者此时的消费偏移位置,继续进行消费,此时有可能会重复消费.

flink对于kafka的rebalance的处理

我们之前说的是正常的情况下rebalance后消费者会从__consumer_offsets中获取偏移位置进行消费,那么对于开启了检查点的flink来说有什么不一样呢?

由于flink只有在checkpoint完成后才会提交偏移到broker服务器,如果按照之前的理解,那么当rebalance发生时,消费者从__consumer_offsets中获取比偏移位置的话也就意味着这个值是上一个checkpoint提交的偏移值,如果顺着这个思路往下,kafka的偏移相当于重置到了上一个checkpoint的位置,那么按理来说其他的状态,比如键值分区状态也会重置到上一个检查点的状态,要不然flink就不能保证状态的一致性了,所以真相到底是什么?

源码追踪:

1.首先看一下flink的kafka consumer的代码:

2.其中reassignPartitions方法代码如下所示:

3.再来看看assign方法的注释:

有没有恍然大悟的感觉?flink中使用assign的方式执行这个任务算子消费的kafka分区,是不会触发rebalance操作的.

彩蛋:

那这样的话,比如当kafka新增了满足条件的主题或者正在监听的主题新增了分区,flink是怎么消费到的?

相关推荐
广州腾科助你拿下华为认证3 分钟前
华为考试:HCIE数通考试难度分析
大数据·华为
在未来等你2 小时前
Elasticsearch面试精讲 Day 17:查询性能调优实践
大数据·分布式·elasticsearch·搜索引擎·面试
大数据CLUB5 小时前
基于spark的澳洲光伏发电站选址预测
大数据·hadoop·分布式·数据分析·spark·数据开发
ratbag6720136 小时前
当环保遇上大数据:生态环境大数据技术专业的课程侧重哪些领域?
大数据
计算机编程小央姐7 小时前
跟上大数据时代步伐:食物营养数据可视化分析系统技术前沿解析
大数据·hadoop·信息可视化·spark·django·课程设计·食物
智数研析社8 小时前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
潘达斯奈基~8 小时前
《大数据之路1》笔记2:数据模型
大数据·笔记
寻星探路8 小时前
数据库造神计划第六天---增删改查(CRUD)(2)
java·大数据·数据库
翰林小院10 小时前
【大数据专栏】流式处理框架-Apache Fink
大数据·flink
RestCloud11 小时前
Kafka实时数据管道:ETL在流式处理中的应用
数据库·kafka·api