flink kafka消费者如何处理kafka主题的rebalance

背景:

我们日常使用kafka客户端消费kafka主题的消息时,当消费者退出/加入消费者组,kafka主题分区数有变等事件发生时,都会导致rebalance的发生,此时一般情况下,如果我们不自己处理offset,我们不需要理会这个rebalance的,当rebalance完成后,每个消费者会从__consumer_offsets中获取每个消费者此时的消费偏移位置,继续进行消费,此时有可能会重复消费.

flink对于kafka的rebalance的处理

我们之前说的是正常的情况下rebalance后消费者会从__consumer_offsets中获取偏移位置进行消费,那么对于开启了检查点的flink来说有什么不一样呢?

由于flink只有在checkpoint完成后才会提交偏移到broker服务器,如果按照之前的理解,那么当rebalance发生时,消费者从__consumer_offsets中获取比偏移位置的话也就意味着这个值是上一个checkpoint提交的偏移值,如果顺着这个思路往下,kafka的偏移相当于重置到了上一个checkpoint的位置,那么按理来说其他的状态,比如键值分区状态也会重置到上一个检查点的状态,要不然flink就不能保证状态的一致性了,所以真相到底是什么?

源码追踪:

1.首先看一下flink的kafka consumer的代码:

2.其中reassignPartitions方法代码如下所示:

3.再来看看assign方法的注释:

有没有恍然大悟的感觉?flink中使用assign的方式执行这个任务算子消费的kafka分区,是不会触发rebalance操作的.

彩蛋:

那这样的话,比如当kafka新增了满足条件的主题或者正在监听的主题新增了分区,flink是怎么消费到的?

相关推荐
2501_933509072 小时前
无锡制造企税惠防错指南:知了问账帮守政策红利线
大数据·人工智能·微信小程序
F36_9_2 小时前
如何在沟通不畅导致误解后进行修复
大数据
青云交2 小时前
Java 大视界 -- 基于 Java 的大数据实时数据处理在工业互联网设备协同制造中的应用与挑战
flink·spark·工业互联网·预测性维护·实时数据处理·java 大数据·设备协同制造
数字化脑洞实验室2 小时前
智能决策系统落地后如何进行数据集成与安全保障?
大数据
❀͜͡傀儡师3 小时前
docker搭建Elasticsearch+Kafka+Logstash+Filebeat日志分析系统
elasticsearch·docker·kafka
老葱头蒸鸡3 小时前
(4)Kafka消费者分区策略、Rebalance、Offset存储机制
sql·kafka·linq
xuyanqiangCode5 小时前
KAFKA自动修改所有以**开头的主题脚本
分布式·kafka·linq
微学AI5 小时前
面向大数据与物联网的下一代时序数据库选型指南:Apache IoTDB 解析与应用
大数据·物联网·时序数据库
人大博士的交易之路6 小时前
今日行情明日机会——20251113
大数据·数据挖掘·数据分析·缠论·道琼斯结构·涨停板