flink kafka消费者如何处理kafka主题的rebalance

背景:

我们日常使用kafka客户端消费kafka主题的消息时,当消费者退出/加入消费者组,kafka主题分区数有变等事件发生时,都会导致rebalance的发生,此时一般情况下,如果我们不自己处理offset,我们不需要理会这个rebalance的,当rebalance完成后,每个消费者会从__consumer_offsets中获取每个消费者此时的消费偏移位置,继续进行消费,此时有可能会重复消费.

flink对于kafka的rebalance的处理

我们之前说的是正常的情况下rebalance后消费者会从__consumer_offsets中获取偏移位置进行消费,那么对于开启了检查点的flink来说有什么不一样呢?

由于flink只有在checkpoint完成后才会提交偏移到broker服务器,如果按照之前的理解,那么当rebalance发生时,消费者从__consumer_offsets中获取比偏移位置的话也就意味着这个值是上一个checkpoint提交的偏移值,如果顺着这个思路往下,kafka的偏移相当于重置到了上一个checkpoint的位置,那么按理来说其他的状态,比如键值分区状态也会重置到上一个检查点的状态,要不然flink就不能保证状态的一致性了,所以真相到底是什么?

源码追踪:

1.首先看一下flink的kafka consumer的代码:

2.其中reassignPartitions方法代码如下所示:

3.再来看看assign方法的注释:

有没有恍然大悟的感觉?flink中使用assign的方式执行这个任务算子消费的kafka分区,是不会触发rebalance操作的.

彩蛋:

那这样的话,比如当kafka新增了满足条件的主题或者正在监听的主题新增了分区,flink是怎么消费到的?

相关推荐
王九思19 分钟前
大数据查询工具Hive介绍
大数据·hive·hadoop
檐下翻书17343 分钟前
HR人力资源管理流程图在线绘制方法
大数据·人工智能·架构·流程图·论文笔记
无忧智库1 小时前
一网统飞:城市级低空空域精细化管理与服务平台建设方案深度解析(WORD)
大数据·网络·人工智能
可儿·四系桜1 小时前
Kafka从入门到精通:分布式消息队列实战指南(Zookeeper 模式)
java·开发语言·zookeeper·kafka
木头程序员1 小时前
持续学习(Continual/Lifelong Learning)综述
大数据·人工智能·深度学习·机器学习
Hello.Reader2 小时前
Apache Cassandra Connector:Flink 与宽列存储的高吞吐协作
大数据·flink·apache
中國龍在廣州2 小时前
35天,成了AI 模型的斩杀线
大数据·人工智能·深度学习·算法·机器人
Gofarlic_oms110 小时前
Windchill用户登录与模块访问失败问题排查与许可证诊断
大数据·运维·网络·数据库·人工智能
Zoey的笔记本11 小时前
2026告别僵化工作流:支持自定义字段的看板工具选型与部署指南
大数据·前端·数据库
lingling00911 小时前
2026 年 BI 发展新趋势:AI 功能如何让数据分析工具 “思考” 和 “对话”?
大数据·人工智能·数据分析