flink kafka消费者如何处理kafka主题的rebalance

背景:

我们日常使用kafka客户端消费kafka主题的消息时,当消费者退出/加入消费者组,kafka主题分区数有变等事件发生时,都会导致rebalance的发生,此时一般情况下,如果我们不自己处理offset,我们不需要理会这个rebalance的,当rebalance完成后,每个消费者会从__consumer_offsets中获取每个消费者此时的消费偏移位置,继续进行消费,此时有可能会重复消费.

flink对于kafka的rebalance的处理

我们之前说的是正常的情况下rebalance后消费者会从__consumer_offsets中获取偏移位置进行消费,那么对于开启了检查点的flink来说有什么不一样呢?

由于flink只有在checkpoint完成后才会提交偏移到broker服务器,如果按照之前的理解,那么当rebalance发生时,消费者从__consumer_offsets中获取比偏移位置的话也就意味着这个值是上一个checkpoint提交的偏移值,如果顺着这个思路往下,kafka的偏移相当于重置到了上一个checkpoint的位置,那么按理来说其他的状态,比如键值分区状态也会重置到上一个检查点的状态,要不然flink就不能保证状态的一致性了,所以真相到底是什么?

源码追踪:

1.首先看一下flink的kafka consumer的代码:

2.其中reassignPartitions方法代码如下所示:

3.再来看看assign方法的注释:

有没有恍然大悟的感觉?flink中使用assign的方式执行这个任务算子消费的kafka分区,是不会触发rebalance操作的.

彩蛋:

那这样的话,比如当kafka新增了满足条件的主题或者正在监听的主题新增了分区,flink是怎么消费到的?

相关推荐
WoShop商城源码21 分钟前
短视频矩阵系统哪家好?全面解析与推荐
大数据·人工智能·其他·矩阵
remCoding2 小时前
Java全栈面试实录:从电商场景到AIGC的深度技术考察
spring boot·redis·spring cloud·ai·kafka·aigc·java面试
倔强的石头1062 小时前
大数据时代下的时序数据库选型指南:基于工业场景的IoTDB技术优势与适用性研究
大数据·时序数据库·iotdb
火火PM打怪中5 小时前
产品经理如何绘制服务蓝图(Service Blueprint)
大数据·产品经理
cui_win12 小时前
Kafka 配置参数详解:ZooKeeper 模式与 KRaft 模式对比
分布式·zookeeper·kafka
Elastic 中国社区官方博客13 小时前
在 Windows 上使用 Docker 运行 Elastic Open Crawler
大数据·windows·爬虫·elasticsearch·搜索引擎·docker·容器
一切顺势而行15 小时前
Flink cdc 使用总结
大数据·flink
cui_win17 小时前
深入理解 Kafka 核心:主题、分区与副本的协同机制
网络·分布式·kafka
淦暴尼17 小时前
基于spark的二手房数据分析可视化系统
大数据·分布式·数据分析·spark
expect7g17 小时前
Flink-反压-1.基本概念
后端·flink