使用Bert预训练模型处理序列推荐任务

最近的工作有涉及该任务,整理一下思路以及代码细节。

流程

总体来说思路就是首先用预训练的bert模型,在训练集的序列上进行CLS任务。对序列内容(这里默认是token id的sequence)以0.3左右的概率进行随机mask,然后将相应sequence的attention mask(原来决定padding index)和label(也就是mask的ground truth)输入到bert model里面。

当然其中vocab.txt并不存在的token是需要add进去的,具体方法不再详述,网上例子很多,注意word embedding也需要初始化就行。

模型定义:
self.model = AutoModelForMaskedLM.from_pretrained('./bert')

模型的输入:
result = self.bert_model(tail_mask, attention_mask, labels)

得到模型训练的结果之后,要做一个选择:

(1)transformer的bert model可以输出要预测时间步的hidden state,可以选择取出对应的hidden state,其中需要在数据处理的时候记录下每个sequence的tail position,也就是要预测位置的idx。另外我认为既然要进行序列推荐,那么最后一个tail position的token表征一定是最重要的,所以需要对tail position的idx专门给个写死的mask,效果会好一些。然后与sequence中item的全集进行相似度的计算,再去算交叉熵loss。

py 复制代码
bert_hidden = result.hidden_states[-1]
bert_seq_hidden = torch.zeros((self.args.batch_size, 312)).to(self.device)
for i in range(self.args.batch_size):
	bert_seq_hidden[i,:] = bert_hidden[i, tail_pos[i], :]
logits = torch.matmul(bert_seq_hidden, test_item_emb.transpose(0, 1))
main_loss = self.criterion(logits, targets)

(2)同时也可以result.loss直接数据mask prediction的loss,我理解这个loss面对的任务是我要求sequence中的各个token表征都要尽可能准确,都要考虑,(1)可能更加注重最后一个位置的标准的准确性。

然后在evaluate阶段,需要注意输入到模型的不再是tail_mask,而是仅仅mask掉tail token id的sequence,因为我们需要尽可能准确的序列信息,只需要保证要预测的存在mask就够了。

由于是推荐任务,而且bert得到的hidden state表征过于隐式,所以需要一定的个性化引导它进行训练。经过个人的实验也确实如此,而且结果相差很多。

以上就是我个人的总结经验,欢迎大家指点。

相关推荐
IT小哥哥呀4 分钟前
基于深度学习的数字图像分类实验与分析
人工智能·深度学习·分类
机器之心28 分钟前
VAE时代终结?谢赛宁团队「RAE」登场,表征自编码器或成DiT训练新基石
人工智能·openai
机器之心29 分钟前
Sutton判定「LLM是死胡同」后,新访谈揭示AI困境
人工智能·openai
大模型真好玩32 分钟前
低代码Agent开发框架使用指南(四)—Coze大模型和插件参数配置最佳实践
人工智能·agent·coze
jerryinwuhan33 分钟前
基于大语言模型(LLM)的城市时间、空间与情感交织分析:面向智能城市的情感动态预测与空间优化
人工智能·语言模型·自然语言处理
落雪财神意1 小时前
股指10月想法
大数据·人工智能·金融·区块链·期股
中杯可乐多加冰1 小时前
无代码开发实践|基于业务流能力快速开发市场监管系统,实现投诉处理快速响应
人工智能·低代码
郭庆汝1 小时前
自然语言处理笔记
笔记·自然语言处理·easyui
渣渣盟1 小时前
解密NLP:从入门到精通
人工智能·python·nlp
新智元1 小时前
万亿级思考模型,蚂蚁首次开源!20 万亿 token 搅局开源 AI
人工智能·openai