Wav2Lip实践

1. 安装

1.1 安装 conda以指定python版本运行环境

下载:Index of /https://repo.anaconda.com/archive/index.html

1.2 如按旧项目基于python3.6版本对话,会有很多包找不到的情况,经摸索后以python3.9构建成功,

复制代码
conda install --channel defaults conda python=3.9 --yes
conda update --channel defaults --all --yes

conda update -n base -c defaults conda
conda create -n py3.9 python=3.9


conda activate py3.9
conda deactivate

conda env list

#添加阿里源
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple
pip config set install.trusted-host mirrors.aliyun.com

requirements.txt 内容

复制代码
#librosa==0.7.0
librosa
#numpy==1.17.1
numpy==1.24
opencv-contrib-python>=4.2.0.34
#opencv-python==4.1.0.25
opencv-python
#torch==1.1.0
torch
#torchvision==0.3.0
torchvision
tqdm==4.45.0
#numba==0.48
numba

(py3.9) D:\Projects\Wav2Lip>pip install -r requirements.txt 

2. CPU与GPU驱动模式

装好后,程序没检查到可用的cuda的话,会使用CPU模式跑,直接拉满100%使用率,一条20秒的片子合成约需20mins 。

手上有块NVDIA GeForce RTX 3060,需分别安装 CUDA, cuDNN 及对应python库的支持,参考CUDA安装教程_SU_ZCS的博客-CSDN博客,一条20秒的片子合成约需6mins,提升一倍多。

命令example:

复制代码
python inference.py --checkpoint_path wav2lip_gan.pth --face src/video/a1.mp4 --audio src/audio/a1.wav --outfile results/a1.mp4
python inference.py --checkpoint_path wav2lip_gan.pth --face src/video/a2.mp4 --audio src/audio/a2.wav --outfile results/a2.mp4
python inference.py --checkpoint_path wav2lip_gan.pth --face src/video/a3.mp4 --audio src/audio/a3.wav --outfile results/a3.mp4
python inference.py --checkpoint_path wav2lip_gan.pth --face src/video/a4.mp4 --audio src/audio/a4.wav --outfile results/a4.mp4
python inference.py --checkpoint_path wav2lip_gan.pth --face src/video/a5.mp4 --audio src/audio/a5.wav --outfile results/a5.mp4
python inference.py --checkpoint_path wav2lip_gan.pth --face src/video/a6.mp4 --audio src/audio/a6.wav --outfile results/a6.mp4
python inference.py --checkpoint_path wav2lip_gan.pth --face src/video/a8.mp4 --audio src/audio/a8.wav --outfile results/a8.mp4
相关推荐
宝桥南山1 小时前
Microsoft Copilot Studio - 尝试一下Agent
microsoft·ai·微软·copilot·rpa·low-code
Johny_Zhao3 小时前
华为MAAS、阿里云PAI、亚马逊AWS SageMaker、微软Azure ML各大模型深度分析对比
linux·人工智能·ai·信息安全·云计算·系统运维
武子康3 小时前
大数据-277 Spark MLib - 基础介绍 机器学习算法 Gradient Boosting GBDT算法原理 高效实现
大数据·人工智能·算法·机器学习·ai·spark-ml·boosting
陈阿土i13 小时前
SpringAI 1.0.0 正式版——利用Redis存储会话(ChatMemory)
java·redis·ai·springai
Baihai IDP13 小时前
“一代更比一代强”:现代 RAG 架构的演进之路
ai·llm·rag·genai·白海科技·检索增强生成
豌豆花下猫15 小时前
Python 潮流周刊#105:Dify突破10万星、2025全栈开发的最佳实践
后端·python·ai
阿部多瑞 ABU17 小时前
# 从底层架构到应用实践:为何部分大模型在越狱攻击下失守?
gpt·安全·ai·自然语言处理
市象18 小时前
联想困局,破于AI?
人工智能·ai·联想
阿部多瑞 ABU1 天前
大模型安全测试报告:千问、GPT 全系列、豆包、Claude 表现优异,DeepSeek、Grok-3 与 Kimi 存在安全隐患
gpt·安全·ai
Juicedata1 天前
JuiceFS v1.3-Beta2:集成 Apache Ranger,实现更精细化的权限控制
运维·人工智能·ai