Wav2Lip实践

1. 安装

1.1 安装 conda以指定python版本运行环境

下载:Index of /https://repo.anaconda.com/archive/index.html

1.2 如按旧项目基于python3.6版本对话,会有很多包找不到的情况,经摸索后以python3.9构建成功,

复制代码
conda install --channel defaults conda python=3.9 --yes
conda update --channel defaults --all --yes

conda update -n base -c defaults conda
conda create -n py3.9 python=3.9


conda activate py3.9
conda deactivate

conda env list

#添加阿里源
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple
pip config set install.trusted-host mirrors.aliyun.com

requirements.txt 内容

复制代码
#librosa==0.7.0
librosa
#numpy==1.17.1
numpy==1.24
opencv-contrib-python>=4.2.0.34
#opencv-python==4.1.0.25
opencv-python
#torch==1.1.0
torch
#torchvision==0.3.0
torchvision
tqdm==4.45.0
#numba==0.48
numba

(py3.9) D:\Projects\Wav2Lip>pip install -r requirements.txt 

2. CPU与GPU驱动模式

装好后,程序没检查到可用的cuda的话,会使用CPU模式跑,直接拉满100%使用率,一条20秒的片子合成约需20mins 。

手上有块NVDIA GeForce RTX 3060,需分别安装 CUDA, cuDNN 及对应python库的支持,参考CUDA安装教程_SU_ZCS的博客-CSDN博客,一条20秒的片子合成约需6mins,提升一倍多。

命令example:

复制代码
python inference.py --checkpoint_path wav2lip_gan.pth --face src/video/a1.mp4 --audio src/audio/a1.wav --outfile results/a1.mp4
python inference.py --checkpoint_path wav2lip_gan.pth --face src/video/a2.mp4 --audio src/audio/a2.wav --outfile results/a2.mp4
python inference.py --checkpoint_path wav2lip_gan.pth --face src/video/a3.mp4 --audio src/audio/a3.wav --outfile results/a3.mp4
python inference.py --checkpoint_path wav2lip_gan.pth --face src/video/a4.mp4 --audio src/audio/a4.wav --outfile results/a4.mp4
python inference.py --checkpoint_path wav2lip_gan.pth --face src/video/a5.mp4 --audio src/audio/a5.wav --outfile results/a5.mp4
python inference.py --checkpoint_path wav2lip_gan.pth --face src/video/a6.mp4 --audio src/audio/a6.wav --outfile results/a6.mp4
python inference.py --checkpoint_path wav2lip_gan.pth --face src/video/a8.mp4 --audio src/audio/a8.wav --outfile results/a8.mp4
相关推荐
Elastic 中国社区官方博客1 小时前
Elasticsearch:使用机器学习生成筛选器和分类标签
大数据·人工智能·elasticsearch·机器学习·搜索引擎·ai·分类
阿杜杜不是阿木木1 小时前
使用ollama部署本地大模型(没有GPU也可以),实现IDEA和VS Code的git commit自动生成
linux·git·vscode·ai·intellij-idea·ollama
getyefang1 天前
uniapp如何接入星火大模型
ai·uni-app
SelectDB技术团队1 天前
Apache Doris 2025 Roadmap:构建 GenAI 时代实时高效统一的数据底座
大数据·数据库·数据仓库·人工智能·ai·数据分析·湖仓一体
你觉得2051 天前
浙江大学朱霖潮研究员:《人工智能重塑科学与工程研究》以蛋白质结构预测为例|附PPT下载方法
大数据·人工智能·机器学习·ai·云计算·aigc·powerpoint
a里啊里啊1 天前
AI提示词收集(持续更新)
ai·大模型·prompt·开发·提示词
Z_W_H_1 天前
ArcGIS Pro/GeoScene Pro AI 助手 2.1 安装教程
arcgis·ai·geoscene
wang_yb1 天前
不平衡样本数据的救星:数据再分配策略
ai·databook
你一定走了很远的路吧1 天前
DeepSeek与ChatGPT的优势对比:选择合适的工具来提升工作效率
ai·chatgpt
洛阳泰山2 天前
PPTAgent:一款开源免费生成和评估幻灯片的项目
python·ai·llm·agent·ppt