Wav2Lip实践

1. 安装

1.1 安装 conda以指定python版本运行环境

下载:Index of /https://repo.anaconda.com/archive/index.html

1.2 如按旧项目基于python3.6版本对话,会有很多包找不到的情况,经摸索后以python3.9构建成功,

复制代码
conda install --channel defaults conda python=3.9 --yes
conda update --channel defaults --all --yes

conda update -n base -c defaults conda
conda create -n py3.9 python=3.9


conda activate py3.9
conda deactivate

conda env list

#添加阿里源
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple
pip config set install.trusted-host mirrors.aliyun.com

requirements.txt 内容

复制代码
#librosa==0.7.0
librosa
#numpy==1.17.1
numpy==1.24
opencv-contrib-python>=4.2.0.34
#opencv-python==4.1.0.25
opencv-python
#torch==1.1.0
torch
#torchvision==0.3.0
torchvision
tqdm==4.45.0
#numba==0.48
numba

(py3.9) D:\Projects\Wav2Lip>pip install -r requirements.txt 

2. CPU与GPU驱动模式

装好后,程序没检查到可用的cuda的话,会使用CPU模式跑,直接拉满100%使用率,一条20秒的片子合成约需20mins 。

手上有块NVDIA GeForce RTX 3060,需分别安装 CUDA, cuDNN 及对应python库的支持,参考CUDA安装教程_SU_ZCS的博客-CSDN博客,一条20秒的片子合成约需6mins,提升一倍多。

命令example:

复制代码
python inference.py --checkpoint_path wav2lip_gan.pth --face src/video/a1.mp4 --audio src/audio/a1.wav --outfile results/a1.mp4
python inference.py --checkpoint_path wav2lip_gan.pth --face src/video/a2.mp4 --audio src/audio/a2.wav --outfile results/a2.mp4
python inference.py --checkpoint_path wav2lip_gan.pth --face src/video/a3.mp4 --audio src/audio/a3.wav --outfile results/a3.mp4
python inference.py --checkpoint_path wav2lip_gan.pth --face src/video/a4.mp4 --audio src/audio/a4.wav --outfile results/a4.mp4
python inference.py --checkpoint_path wav2lip_gan.pth --face src/video/a5.mp4 --audio src/audio/a5.wav --outfile results/a5.mp4
python inference.py --checkpoint_path wav2lip_gan.pth --face src/video/a6.mp4 --audio src/audio/a6.wav --outfile results/a6.mp4
python inference.py --checkpoint_path wav2lip_gan.pth --face src/video/a8.mp4 --audio src/audio/a8.wav --outfile results/a8.mp4
相关推荐
AI绘画哇哒哒6 小时前
【干货收藏】深度解析AI Agent框架:设计原理+主流选型+项目实操,一站式学习指南
人工智能·学习·ai·程序员·大模型·产品经理·转行
程序设计实验室6 小时前
AMD显卡也能畅玩AI画图!ROCm+ComfyUI部署全指南
ai·ai画图
bruce_哈哈哈9 小时前
Claude Code--Feishu-Skill-demo
ai
User_芊芊君子10 小时前
HCCL高性能通信库编程指南:构建多卡并行训练系统
人工智能·游戏·ai·agent·测评
慢半拍iii10 小时前
对比源码解读:ops-nn中卷积算子的硬件加速实现原理
人工智能·深度学习·ai·cann
慢半拍iii11 小时前
CANN算子开发实战:手把手教你基于ops-nn仓库编写Broadcast广播算子
人工智能·计算机网络·ai
User_芊芊君子11 小时前
CANN数学计算基石ops-math深度解析:高性能科学计算与AI模型加速的核心引擎
人工智能·深度学习·神经网络·ai
程序员泠零澪回家种桔子11 小时前
Spring AI框架全方位详解
java·人工智能·后端·spring·ai·架构
深鱼~12 小时前
数学计算加速利器:ops-math在昇腾平台的应用详解
ai·开源·cann
kjkdd12 小时前
6.1 核心组件(Agent)
python·ai·语言模型·langchain·ai编程