28.Netty源码之缓存一致性协议

Mpsc Queue 基础知识

Mpsc 的全称是 Multi Producer Single Consumer,多生产者单消费者。Mpsc Queue 可以保证多个生产者同时访问队列是线程安全的,而且同一时刻只允许一个消费者从队列中读取数据。 Netty Reactor 线程中任务队列 taskQueue 必须满足多个生产者可以同时提交任务,所以 JCTools 提供的 Mpsc Queue 非常适合 Netty Reactor 线程模型。

Mpsc Queue 有多种的实现类,例如 MpscArrayQueue、MpscUnboundedArrayQueue、MpscChunkedArrayQueue 等。我们先抛开一些提供特性功能的队列,聚焦在最基础的 MpscArrayQueue,回过头再学习其他类型的队列会事半功倍。

首先我们看下 MpscArrayQueue 的继承关系,会发现相当复杂,如下图所示。

伪共享

除了顶层 JDK 原生的 AbstractCollection、AbstractQueue,MpscArrayQueue 还继承了很多类似于 MpscXxxPad 以及 MpscXxxField 的类。我们可以发现一个很有意思的规律,每个有包含属性的类后面都会被 MpscXxxPad 类隔开。MpscXxxPad 到底起到什么作用呢?我们自顶向下,将所有类的字段合并在一起,看下 MpscArrayQueue 的整体结构。

arduino 复制代码
// ConcurrentCircularArrayQueueL0Pad
long p01, p02, p03, p04, p05, p06, p07;
long p10, p11, p12, p13, p14, p15, p16, p17;
// ConcurrentCircularArrayQueue
protected final long mask;
protected final E[] buffer;
// MpmcArrayQueueL1Pad
long p00, p01, p02, p03, p04, p05, p06, p07;
long p10, p11, p12, p13, p14, p15, p16;
// MpmcArrayQueueProducerIndexField
private volatile long producerIndex;
// MpscArrayQueueMidPad
long p01, p02, p03, p04, p05, p06, p07;
long p10, p11, p12, p13, p14, p15, p16, p17;
// MpscArrayQueueProducerLimitField
private volatile long producerLimit;
// MpscArrayQueueL2Pad
long p00, p01, p02, p03, p04, p05, p06, p07;
long p10, p11, p12, p13, p14, p15, p16;
// MpscArrayQueueConsumerIndexField
protected long consumerIndex;
// MpscArrayQueueL3Pad
long p01, p02, p03, p04, p05, p06, p07;
long p10, p11, p12, p13, p14, p15, p16, p17;

可以看出,MpscXxxPad 类中使用了大量 long 类型的变量,其命名没有什么特殊的含义,只是起到填充的作用。如果你也读过 Disruptor 的源码,会发现 Disruptor 也使用了类似的填充方法。Mpsc Queue 和 Disruptor 之所以填充这些无意义的变量,是为了解决伪共享(false sharing)问题。

什么是伪共享呢?我们有必要补充这方面的基础知识。在计算机组成中,CPU 的运算速度比内存高出几个数量级,为了 CPU 能够更高效地与内存进行交互,在 CPU 和内存之间设计了多层缓存机制,如下图所示。

一般来说,CPU 会分为三级缓存,分别为L1 一级缓存、L2 二级缓存和L3 三级缓存。

越靠近 CPU 的缓存,速度越快,但是缓存的容量也越小。

所以从性能上来说,L1 > L2 > L3,容量方面 L1 < L2 < L3。CPU 读取数据时,首先会从 L1 查找,如果未命中则继续查找 L2,如果还未能命中则继续查找 L3,最后还没命中的话只能从内存中查找,读取完成后再将数据逐级放入缓存中。

此外,多线程之间共享一份数据的时候,需要其中一个线程将数据写回主存,其他线程访问主存数据。

由此可见,引入多级缓存是为了能够让 CPU 利用率最大化。如果你在做频繁的 CPU 运算时,需要尽可能将数据保持在缓存中。那么 CPU 从内存中加载数据的时候,是如何提高缓存的利用率的呢?

这就涉及缓存行(Cache Line)的概念,Cache Line 是 CPU 缓存可操作的最小单位,CPU 缓存由若干个 Cache Line 组成。

Cache Line 的大小与 CPU 架构有关,在目前主流的 64 位架构下 ,Cache Line 的大小通常为 64 Byte。Java 中一个 long 类型是 8 Byte,所以一个 Cache Line 可以存储 8 个 long 类型变量。

CPU 在加载内存数据时,会将相邻的数据一同读取到 Cache Line 中,因为相邻的数据未来被访问的可能性最大,这样就可以避免 CPU 频繁与内存进行交互了。

伪共享问题是如何发生的呢?它又会造成什么影响呢?我们使用下面这幅图进行讲解。

假设变量 A、B、C、D 被C1和C2加载到同一个 Cache Line,它们会被高频地修改。

当线程 1 在 CPU Core1 中中对变量 A 进行修改,修改完成后 CPU Core1 会通知其他 CPU Core 该缓存行已经失效。

然后线程 2 在 CPU Core2 中对变量 C 进行修改时,发现 Cache line 已经失效,此时 CPU Core1 会将数据重新写回内存,CPU Core2 再从内存中读取数据加载到当前 Cache line 中。

由此可见,如果同一个 Cache line 被越多的线程修改,那么造成的写竞争就会越激烈,数据会频繁写入内存,导致性能浪费。

所以如何让一个缓存行尽量被更少的线程修改呢?

原来一个缓存行被多个线程修改,是因为一个缓存行存储了多个数据,每个数据可能由不同的线程修改。

所以我们可以让一个缓存行只存储一个数据。这样可以降低多个线程同时访问一个数据的概率。

题外话,多核处理器中,每个核的缓存行内容是如何保证一致的呢?

有兴趣的同学可以深入学习下缓存一致性协议 MESI。

对于伪共享问题,我们应该如何解决呢?Disruptor 和 Mpsc Queue 都采取了空间换时间的策略,让不同线程共享的对象加载到不同的缓存行即可。下面我们通过一个简单的例子进行说明。

arduino 复制代码
public class FalseSharingPadding {
    protected long p1, p2, p3, p4, p5, p6, p7;
    protected volatile long value = 0L;
    protected long p9, p10, p11, p12, p13, p14, p15;
}

从上述代码中可以看出,变量 value 前后都填充了 7 个 long 类型的变量。这样不论在什么情况下,都可以保证在多线程访问 value 变量时,value 与其他不相关的变量处于不同的 Cache Line,如下图所示。

伪共享问题一般是非常隐蔽的,在实际开发的过程中,并不是项目中所有地方都需要花费大量的精力去优化伪共享问题。CPU Cache 的填充本身也是比较珍贵的,我们应该把精力聚焦在一些高性能的数据结构设计上,把资源用在刀刃上,使系统性能收益最大化。

使用缓存行的对齐能够提高效率,也就是让数据位于同一缓存行,会浪费内存(会定义很多变量),但是能提升效率。

Java 8 中已经提供了官方的解决方案,Java 8 中新增了一个注解: @sun.misc.Contended。加上这个注解的类会自动补齐缓存行,需要注意的是此注解默认是无效的,需要在 jvm 启动时设置 -XX:-RestrictContended 才会生效。

java 复制代码
@sun.misc.Contended
public final static class VolatileLong {    
public volatile long value = 0L;    
//public long p1, p2, p3, p4, p5, p6;
}

至此,我们知道 Mpsc Queue 为了解决伪共享问题填充了大量的 long 类型变量,造成源码不易阅读。

因为变量填充只是为了提升 Mpsc Queue 的性能,与 Mpsc Queue 的主体功能无关。

接下来我们先忽略填充变量,开始分析 Mpsc Queue 的基本实现原理。

缓存一致性协议(MESI)

在目前主流的计算机中,cpu执行计算的主要流程如图所示:

数据加载的流程如下:

1.将程序和数据从硬盘加载到内存中

2.将程序和数据从内存加载到缓存中(目前三级缓存,数据加载顺序:L3->L2->L1)

3.CPU将缓存中的数据加载到寄存器中,并进行运算

4.CPU会将数据刷新回缓存,并在一定的时间周期之后刷新回内存

缓存一致性协议发展背景

现在的CPU基本都是多核CPU,服务器更是提供了多CPU的支持,而每个核心也都有自己独立的缓存,当多个核心同时操作多个线程对同一个数据进行更新时,如果核心2在核心1还未将更新的数据刷回内存之前读取了数据,并进行操作,就会造成程序的执行结果造成随机性的影响,这对于我们来说是无法容忍的。

而总线加锁是对整个内存进行加锁,在一个核心对一个数据进行修改的过程中。

其他的核心也无法修改内存中的其他数据,这样对导致CPU处理性能严重下降。

缓存一致性协议提供了一种高效的内存数据管理方案。

它只会对单个缓存行(缓存行是缓存中数据存储的基本单元)的数据进行加锁,不会影响到内存中其他数据的读写。

因此,我们引入了缓存一致性协议来对内存数据的读写进行管理。

MESI协议

缓存一致性协议有MSI,MESI,MOSI,Synapse,Firefly及DragonProtocol等等,接下来我们主要介绍MESI协议。

MESI分别代表缓存行数据所处的四种状态,通过对这四种状态的切换,来达到对缓存数据进行管理的目的。

状态 描述 监听任务
M 修改(Modify) 该缓存行有效,数据被修改了,和内存中的数据不一致,数据只存在于本缓存行中 缓存行必须时刻监听所有试图读该缓存行相对应的内存的操作,其他缓存须在本缓存行写回内存并将状态置为E之后才能操作该缓存行对应的内存数据
E 独享、互斥(Exclusive) 该缓存行有效,数据和内存中的数据一致,数据只存在于本缓存行中 缓存行必须监听其他缓存读主内存中该缓存行相对应的内存的操作,一旦有这种操作,该缓存行需要变成S状态
S 共享(Shared) 该缓存行有效,数据和内存中的数据一致,数据同时存在于其他缓存中 缓存行必须监听其他缓存是该缓存行无效或者独享该缓存行的请求,并将该缓存行置为I状态
I 无效(Invalid) 该缓存行数据无效

备注

arduino 复制代码
1.MESI协议只对汇编指令中执行加锁操作的变量有效,表现到java中为使用voliate关键字定义变量或使用加锁操作。volatile是Java这种高级语言中的一个关键字,要实现这个volatile的功能,需要借助MESI!
CPU有缓存一致性协议:MESI,这不错。但MESI并非是无条件生效的!
不是说CPU支持MESI,那么你的变量就默认能做到缓存一致了。
https://www.zhihu.com/question/296949412
​
2.对于汇编指令中执行加锁操作的变量,MESI协议在以下两种情况中也会失效:
​
一、CPU不支持缓存一致性协议。
​
二、该变量超过一个缓存行的大小,缓存一致性协议是针对单个缓存行进行加锁,此时,缓存一致性协议无法再对该变量进行加锁,只能改用总线加锁的方式。
​
其实这里也是分段加锁 提高并发度。

MESI工作原理:(此处统一默认CPU为单核CPU,在多核CPU内部执行过程和下面流程一致)

1、CPU1从内存中将变量a加载到缓存中,并将变量a的状态改为E(独享),并通过总线嗅探机制对内存中变量a的操作进行嗅探

2、此时,CPU2读取变量a,总线嗅探机制会将CPU1中的变量a的状态置为S(共享),并将变量a加载到CPU2的缓存中,状态为S

3、CPU1对变量a进行修改操作,此时CPU1中的变量a会被置为M(修改)状态,而CPU2中的变量a会被通知,改为I(无效)状态,此时CPU2中的变量a做的任何修改都不会被写回内存中(高并发情况下可能出现两个CPU同时修改变量a,并同时向总线发出将各自的缓存行更改为M状态的情况,此时总线会采用相应的裁决机制进行裁决,将其中一个置为M状态,另一个置为I状态,且I状态的缓存行修改无效)

4、CPU1将修改后的数据写回内存,并将变量a置为E(独占)状态

5、此时,CPU2通过总线嗅探机制得知变量a已被修改,会重新去内存中加载变量a,同时CPU1和CPU2中的变量a都改为S状态

在上述过程第3步中,CPU2的变量a被置为I(无效)状态后,只是保证变量a的修改不会被写回内存,但CPU2有可能会在CPU1将变量a置为E(独占)状态之前重新读取内存中的变量a,这个取决于汇编指令是否要求CPU2重新加载内存。

总结

以上就是MESI的执行原理,MESI协议只能保证并发编程中的可见性,并未解决原子性和有序性的问题,所以只靠MESI协议是无法完全解决多线程中的所有问题。

相关推荐
追逐时光者42 分钟前
免费、简单、直观的数据库设计工具和 SQL 生成器
后端·mysql
初晴~1 小时前
【Redis分布式锁】高并发场景下秒杀业务的实现思路(集群模式)
java·数据库·redis·分布式·后端·spring·
盖世英雄酱581361 小时前
InnoDB 的页分裂和页合并
数据库·后端
小_太_阳2 小时前
Scala_【2】变量和数据类型
开发语言·后端·scala·intellij-idea
直裾2 小时前
scala借阅图书保存记录(三)
开发语言·后端·scala
星就前端叭2 小时前
【开源】一款基于Vue3 + WebRTC + Node + SRS + FFmpeg搭建的直播间项目
前端·后端·开源·webrtc
小林coding3 小时前
阿里云 Java 后端一面,什么难度?
java·后端·mysql·spring·阿里云
AI理性派思考者3 小时前
【保姆教程】手把手教你在Linux系统搭建早期alpha项目cysic的验证者&证明者
后端·github·gpu
从善若水4 小时前
【2024】Merry Christmas!一起用Rust绘制一颗圣诞树吧
开发语言·后端·rust