视图矩阵推导

线性代数知识背景

1.基本概念

α 1,α 2,...,α n 是 n 维空间 R n 中的线性无关 的向量组,则任一向量 βR n 均可由 α 1,α 2,...,α n 线性表示,即 β = k1*α 1 + k2*α 2 + ... + kn*α n,,称有序向量组 α 1,α 2,...,α n是 R n 的一个 ,基向量的个数 n 称为向量空间的维数 ,而 [k1,k2,...,kn] 称为向量 β 在基α 1,α 2,...,α n下的坐标 ,或称为 β 的坐标行(列)向量。

2.基变换、坐标变化

定理1:α 1,α 2,...,α n 和 β 1,β 2,...,β n 是R n中的两个基,且有关系 [α 1,α 2,...,α n] = [β 1,β 2,...,β n] * C ,则称此式为由基β 1,β 2,...,β n 到基 α 1,α 2,...,α n 的基变换公式 ,矩阵C 称为由基 β 1,β 2,...,β n 到基 α 1,α 2,...,α n 的过渡矩阵C 的第 i 列是α i 在基 β 1,β 2,...,β n 下的坐标列向量,且过渡矩阵 C可逆矩阵

定理2 γ 在基 α 1,α 2,...,α n 和 β 1,β 2,...,β n 下的坐标分别是y =[y1,y2,...,yn],x =[x1,x2,...xn],即 γ = [α 1,α 2,...,α n]*y = [β 1,β 2,...,β n]*x 若基 β 1,β 2,...,β3 到基α 1,α 2,...,α n 过渡矩阵为 C ,即 [α 1,α 2,...,α n] = [β 1,β 2,...,β n] * C ,则γ = [α 1,α 2,...,α n]*y = [β 1,β 2,...,β n]*x = [β 1,β 2,...,β n]*C *y ,得x = C *y ,此式称为坐标变换公式 。(过渡矩阵C可通过基所构成的逆矩阵求得)

空间中对边向量相等的四边形是平行四边形

视图矩阵推导

已知α 1,α 2,α 3为世界坐标系的基,β 1,β 2,β 3作为相机坐标系的基,且基α 1,α 2,...,α n 到基 β 1,β 2,...,β n 的过渡矩阵为M ;在世界坐标系中有点P(x,y,z)、向量α(x,y,z),求P点在相机坐标系中的坐标。

世界坐标系中,可将α 看作过起点o1 (0,0,0)和终点P 的向量,由定理2可得,在相机坐标系中向量α 可表示 β= α*M ;相机坐标系中将β 看作过起点o2 (0,0,0)和终点P1 (坐标同 β 坐标) 的向量;α、β表示三维空间中的同一向量,故四边形 o1,o2,P1,P为平行四边形,则向量(o1,o2)与向量(P,P1)为三维空间中的同一向量;在相机空间中,点o1,o2,P1坐标已知,所以点P在相机空间的坐标易得。

个人理解,不当之处,请各位大佬指出~~~

相关推荐
猿儿本无心7 小时前
WebGL数学手记:矩阵基础
线性代数·矩阵·webgl
weixin_4284984919 小时前
如何判断多个点组成的3维面不是平的,如果不是平的,如何拆分成多个平面
线性代数
呵呵哒( ̄▽ ̄)"1 天前
常考题:通过解方程组求矩阵
线性代数·矩阵
RedMery1 天前
多元高斯分布函数
线性代数·矩阵·概率论
2301_764441332 天前
Altshuller矛盾矩阵查询:基于python和streamlit
python·线性代数·矩阵
呵呵哒( ̄▽ ̄)"2 天前
线性代数:同解(2)
线性代数
明月看潮生2 天前
青少年编程与数学 02-015 大学数学知识点 02课题、线性代数
线性代数·机器学习·青少年编程·编程与数学
田梓燊3 天前
定积分的应用(4.39-4.48)
线性代数·概率论
lisw053 天前
编程范式演进与开发者能力矩阵重构
线性代数·矩阵·重构
呵呵哒( ̄▽ ̄)"3 天前
线性代数:分块矩阵,秩,齐次线性,非齐次线性的解相关经典例题
线性代数·机器学习·矩阵