线性代数复习公式整理(自用/持续更新)

第一章 行列式

设A、B为n阶矩阵

∣ A T ∣ = ∣ A ∣ \left | A^T \right | =\left | A \right | AT =∣A∣
∣ A m ∣ = ∣ A ∣ m \left | A^m \right | =\left | A \right | ^m ∣Am∣=∣A∣m
∣ k A ∣ = k n ∣ A ∣ \left | kA \right | =k^n\left | A \right | ∣kA∣=kn∣A∣
∣ A B ∣ = ∣ A ∣ ∣ B ∣ \left | AB \right | =\left | A \right | \left | B \right | ∣AB∣=∣A∣∣B∣
若 A 可逆,则 ∣ A − 1 ∣ = 1 ∣ A ∣ 若A可逆,则\left | A^{-1} \right | =\frac{1}{\left | A\right | } 若A可逆,则 A−1 =∣A∣1
∣ A ∗ ∣ = ∣ A ∣ n − 1 \left | A^* \right | =\left | A \right | ^{n-1} ∣A∗∣=∣A∣n−1
A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=\left | A \right | E AA∗=A∗A=∣A∣E
A ∗ = ∣ A ∣ A − 1 ( 若 A 可逆 ) A^*=\left | A \right | A^{-1}(若A可逆) A∗=∣A∣A−1(若A可逆)
A = ∣ A ∣ ( A ∗ ) − 1 A=\left | A \right | (A^*)^{-1} A=∣A∣(A∗)−1
∣ A 1 A 2 A 3 ∣ = A 1 A 2 A 3 , ∣ A 1 A 2 A 3 ∣ = − A 1 A 2 A 3 \begin{vmatrix}A_1 & & \\ & A_2 & \\ & &A_3 \end{vmatrix}=A_1A_2A_3, \begin{vmatrix} & &A_1 \\ & A_2 & \\A_3 & & \end{vmatrix}=-A_1A_2A_3 A1A2A3 =A1A2A3, A3A2A1 =−A1A2A3

设A为n阶矩阵,B为m阶矩阵,根据拉普拉斯展开定理有

∣ A 0 0 B ∣ = ∣ A C 0 B ∣ = ∣ A 0 C B ∣ = ∣ A ∣ ∣ B ∣ \begin{vmatrix}A & 0\\0 &B \end{vmatrix}=\begin{vmatrix}A & C\\0 &B \end{vmatrix}=\begin{vmatrix}A & 0\\C &B \end{vmatrix}=\left | A \right | \left | B \right | A00B = A0CB = AC0B =∣A∣∣B∣
∣ 0 A B 0 ∣ = ∣ C A B 0 ∣ = ∣ 0 A B C ∣ = ( − 1 ) m n ∣ A ∣ ∣ B ∣ \begin{vmatrix}0 & A\\B &0 \end{vmatrix}=\begin{vmatrix}C & A\\B &0 \end{vmatrix}=\begin{vmatrix}0 & A\\B &C \end{vmatrix}=(-1)^{mn}\left | A \right | \left | B \right | 0BA0 = CBA0 = 0BAC =(−1)mn∣A∣∣B∣

第二章 矩阵

矩阵转置的性质

( A T ) T = A (A^T)^T=A (AT)T=A
( k A ) T = k A T (kA)^T=kA^T (kA)T=kAT
( A ± B ) T = A T ± B T (A\pm B)^T=A^T\pm B^T (A±B)T=AT±BT
( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT
( A − 1 ) T = ( A T ) − 1 (A^{-1})^T=(A^T)^{-1} (A−1)T=(AT)−1
( A T ) m = ( A m ) T (A^T)^m=(A^m)^T (AT)m=(Am)T

矩阵伴随的性质

A ∗ = ∣ A ∣ A − 1 ( 若 A 可逆 ) A^*=\left | A \right | A^{-1}(若A可逆) A∗=∣A∣A−1(若A可逆)
A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{\left | A \right | } A^* A−1=∣A∣1A∗
( A T ) ∗ = ( A ∗ ) T (A^T)^*=(A^*)^T (AT)∗=(A∗)T
( k A ) ∗ = k n − 1 A ∗ (kA)^*=k^{n-1}A^* (kA)∗=kn−1A∗
( A B ) ∗ = B ∗ A ∗ (AB)^*=B^*A^* (AB)∗=B∗A∗
( a b c d ) ∗ = ( d − b − c a ) \begin{pmatrix} a & b\\ c&d \end{pmatrix}^*=\begin{pmatrix} d & -b\\ -c&a \end{pmatrix} (acbd)∗=(d−c−ba)

相关推荐
峙峙峙1 天前
线性代数--AI数学基础复习
人工智能·线性代数
CVer儿1 天前
svd分解求旋转平移矩阵
线性代数·算法·矩阵
张晓~183399481211 天前
数字人分身+矩阵系统聚合+碰一碰发视频: 源码搭建-支持OEM
线性代数·矩阵·音视频
山登绝顶我为峰 3(^v^)32 天前
如何录制带备注的演示文稿(LaTex Beamer + Pympress)
c++·线性代数·算法·计算机·密码学·音视频·latex
微小冷2 天前
二关节机器人系统模型推导
线性代数·机器人·概率论·推导·拉格朗日函数·二关节机器人·机器人控制系统的设计
luofeiju3 天前
使用LU分解求解线性方程组
线性代数·算法
FF-Studio3 天前
【硬核数学 · LLM篇】3.1 Transformer之心:自注意力机制的线性代数解构《从零构建机器学习、深度学习到LLM的数学认知》
人工智能·pytorch·深度学习·线性代数·机器学习·数学建模·transformer
盛寒4 天前
矩阵的定义和运算 线性代数
线性代数
盛寒4 天前
初等变换 线性代数
线性代数
叶子爱分享4 天前
浅谈「线性代数的本质」 - 系列合集
线性代数