微服务与Nacos概述-3

流量治理

在微服务架构中将业务拆分成一个个的服务,服务与服务之间可以相互调用,但是由于网络原因或者自身的原因,服务并不能保证服务的100%可用,如果单个服务出现问题,调用这个服务就会出现网络延迟,此时若有大量的网络涌入,会形成任务堆积,最终导致服务瘫痪。

流量是一个系统中最重要的运维参数之一,在具体的应用中,作为产品部署,必须进行压力测试jmeter,需要通过压力测试查找应用的QPS值

在高并发系统中,出于系统保护角度考虑,通常会对流量进行限流;不但在工作中要频繁使用,而且也是面试中的高频考点。注意重点在于最常用的限流算法大致有三种:令牌桶算法,漏桶算法,计数器算法

  • 阿里开源的限流框架 Sentinel 中的匀速排队限流策略,就采用了漏桶算法

  • Nginx中的限流模块 limit_req_zone 也是采用了漏桶算法

总结限流算法

  • 固定窗口算法实现简单,性能高,但是会有临界突发流量问题,瞬时流量最大可以达到阈值的2倍

  • 为了解决临界突发流量,可以将窗口划分为多个更细粒度的单元,每次窗口向右移动一个单元,于是便有了滑动窗口算法

  • 滑动窗口当流量到达阈值时会瞬间掐断流量,所以导致流量不够平滑

  • 想要达到限流的目的,又不会掐断流量,使得流量更加平滑?可以考虑漏桶算法!需要注意的是,漏桶算法通常配置一个FIFO的队列使用以达到允许限流的作用

  • 由于速率固定,即使在某个时刻下游处理能力过剩,也不能得到很好的利用,这是漏桶算法的一个短板。

  • 限流和瞬时流量其实并不矛盾,在大多数场景中,短时间突发流量系统是完全可以接受的。令牌桶算法就是不二之选了,令牌桶以固定的速率v产生令牌放入一个固定容量为n的桶中,当请求到达时尝试从桶中获取令牌

  • 当桶满时,允许最大瞬时流量为n;当桶中没有剩余流量时则限流速率最低,为令牌生成的速率v

  • 如何实现更加灵活的多级限流呢?滑动日志限流算法了解一下!这里的日志则是请求的时间戳,通过计算制定时间段内请求总数来实现灵活的限流。当然,由于需要存储时间戳信息,其占用的存储空间要比其他限流算法要大得多。

限流算法并没有绝对的好劣之分,如何选择合适的限流算法呢?

  • 不妨从性能,是否允许超出阈值,落地成本,流量平滑度,是否允许突发流量以及系统资源大小限制多方面考虑

  • 当然市面上也有比较成熟的限流工具和框架。如Google出品的Guava中基于令牌桶实现的限流组件拿来即用;alibaba开源的面向分布式服务架构的流量控制框架Sentinel是基于滑动窗口实现的。

软件系统的可靠性或者可用性经常会使用x个9表示,其中3个9表示1年8.76小时适用于电脑或服务器,4个9表示52.6分钟适用于企业级设备,5个9表示5.26分钟适用于一般电信级设备。具体生产环境中最容易出现的是一种服务的雪崩效应问题。

RESTful接口的重试实现

1、依赖:spring-retry

2、开启Retry支持,在主类或者配置类上使用EnableRetry注解,一般使用在service层,开启retry功能

java 复制代码
@RestController
@EnableRetr
public class TestController {
    @Autowired
    private RestTemplate restTemplate;
    @RequestMapping("/test")
    @Retryable(value = Exception.class, maxAttempts = 3, backoff =
    @Backoff(delay = 2000, multiplier = 1.0) )//针对test方法提供了异常重试的支持,value
//是异常类型,maxAttempts最大重试次数,backoff重试的相关参数配置,例如延迟时间等
    public String test() {
        String object = restTemplate.getForObject("http://retryprovider/retry", String.class);
        return object;
    }
    @Recover 对应的异常处理
    public String recover(Exception exception){
        return exception.getMessage();
    }
}

Sentinel

Sentinel是阿里提供的基于滑动窗口的流量控制和熔断降级的工具,用于保证分布式系统中应用的可靠性和稳定性,主要依靠于ProcessorSlotChain处理槽链的方式实现,可以将不同功能的Slot采用责任链模式组织起来,以松耦合的方式实现限流、熔断、系统保护等功能

基本概念

  • 限流

  • 熔断

  • 削峰填谷

在Sentinel应用种会引入一个webUI的管理控制器sentinel-dashboard,管理的默认用户名和口令为sentinel/sentinel

  • 查看集群信息以及各个节点的健康状况

  • 可以提供秒级的服务监控统计

  • 提供GUI进行流控规则配置、熔断降级以及配置规则的推送

限流的基本使用

限流主要用于将超过阈值配置的流量在到达目标之前进行处理

常规的限流策略有2种:QPS每秒的访问次数、处理线程个数

常规的限流处理方式有3种:直接拒绝、冷系统预热、匀速排队

1、添加依赖:spring-cloud-starter-alibaba-sentinel

2、添加配置

properties 复制代码
# Sentinel 控制台地址
spring.cloud.sentinel.transport.dashboard=localhost:8092

3、在访问的控制器上添加配置

java 复制代码
@RestController
public class TestController {
    @GetMapping("/test")
    //可以使用SentinelResource定义资源名称
    // @SentinelResource(value = "hello")
    public String sayHello(String name){
        return "Hello "+name+"!";
    }
}

4、可以通过sentinel-dashboard配置指定资源的流控规则。默认为QPS表示每秒钟允许访问的次数,如果在规定的时间内超过阈值则会产生一个异常FlowException,默认处理方式为快速失败

java 复制代码
@RestController
public class TestController {
    @GetMapping("/test")
    //可以使用SentinelResource定义资源名称
    @SentinelResource(value = "hello",blockHandler = "helloBlock")
    public String sayHello(String name){
        return "Hello "+name+"!";
    }
    public String helloBlock(String name, BlockException exception){
        System.out.println(name+"-->"+exception);
        if(BlockException.isBlockException(exception)){
            //限流处理
            return "限流降级:Block:"+exception.getMessage();
        }
        return exception.getMessage();
    }
}
  • Value:资源名称,必需项(不能为空)

  • blockHandler:处理BlockException的函数名称(可以理解对Sentinel的配置进行方法兜底)。

    • 函数要求:

      • 必须是public修饰

      • 返回类型与原方法一致

      • 参数类型需要和原方法相匹配,并在最后加BlockException类型的参数。

  • 默认需和原方法在同一个类中,若希望使用其他类的函数,可配置blockHandlerClass,并指定blockHandlerClass里面的方法。

    • blockHandlerClass:存放blockHandler的类。对应的处理函数必须是public static修饰,否则无法解析,其他要求:同blockerHandler

    fallback:用于在抛出异常的时候提供fallback处理逻辑(可以理解为对java异常情况方法兜底)。

    fallback函数可以针对所有类型的异常(除了exceptionsToIgnore里面排除掉的异常类型)进行处理。

    函数要求:

    • 返回类型与原方法一致

    • 参数类型需要和原方法相匹配,Sentinel 1.6开始,也可以在方法最后加Throwable类型的参数。

    • 默认需和原方法在同一个类中。若希望使用其他类的函数,可配置fallbackClass,并制定fallbackClass里面的方法。

      fallbackClass:存放fallback的类。对应的处理函数必须static修饰,否则无法解析,其他要求:同fallback。

Sentinal-dashboard的配置

阈值类型:阈值类型QPS或者并发线程数

  • 单机QPS为5即每秒只允许5次请求,超出的请求会被拦截并报错。

流控模式:当出现流控问题,就是超过阈值的处理方法

  • 流控模式有直接、关联和链路三种。在添加限流规则时,点击高级选项,可以选择三种流控模式

    • 1、直接,统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式

    • 2、关联,统计与当前资源相关的另一个资源,触发阈值时对当前资源限流。

    • 3、链路,统计从指定链路访问到本资源的请求,触发阈值时对指定链路限流

  • 总结流控模式

    • 直接模式:对当前资源限流

    • 关联模式:高优先级资源触发阈值,对低优先级资源限流。

    • 链路模式:阈值统计时,只统计从指定资源进入当前资源的请求,是对请求来源的限流

流控效果有快速失败、Warm Up和排队等待三种,流控效果是指请求达到流控阈值时应该采取的措施,

  • 1、快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。

  • 2、warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。

  • 3、排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长

流控效果:1、快速失败是QPS超过阈值时,拒绝新的请求。2、warm up是QPS超过阈值时,拒绝新的请求;QPS阈值是逐渐提升的,可以避免冷启动时高并发导致服务宕机。3、排队等待是请求会进入队列,按照阈值允许的时间间隔依次执行请求;如果请求预期等待时长大于超时时间,直接拒绝。

熔断的基本使用

断路器模式,在具体应用中断路器有Hystrix和Sentinel

状态机包括三个状态

  • closed关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态

  • open打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。Open状态5秒后会进入half-open状态

  • half-open半开状态,放行一次请求,根据执行结果来判断接下来的操作。请求成功则切换到closed状态;请求失败则切换到open状态

可以使用Sentinel-dashboard配置熔断规则

Sentinel提供的熔断策略有3种:慢调用RT比例、异常比例、异常个数

java 复制代码
@RestController
public class HelloController {
    @Value("${spring.application.name}")
    private String appName;

    @SentinelResource(value = "hello", blockHandler = "handleError",
fallback = "handleException") //可以在控制器中,也可以在业务实现类的方法上
    @RequestMapping("/hello")
    public String sayHello(String name) {
        if(!StringUtils.hasText(name)) throw new
IllegalArgumentException("名称不能为空!");
        return String.format("[%s] said: hello %s!", appName, name);
    }
    public String handleError(String name, BlockException ex) { //流控降级处理
        ex.printStackTrace();
        return "error!"; }
    public String handleException(String name,Throwable t) { //异常降级处理
        return "参数错误!"; }
}

熔断降级处理

熔断降级设计理念,在限制的手段上,Sentinel 和 Hystrix 采取了完全不一样的方法。

Hystrix 通过线程池隔离的方式,来对依赖资源进行了隔离。这样做的好处是资源和资源之间做到了最彻底的隔离。缺点是除了增加了线程切换的成本,过多的线程池导致线程数目过多,还需要预先给各个资源做线程池大小的分配。

Sentinel 对这个问题采取了两种手段:

1、通过并发线程数进行限制。和资源池隔离的方法不同,Sentinel 通过限制资源并发线程的数量,来减少不稳定资源对其它资源的影响。这样不但没有线程切换的损耗,也不需要您预先分配线程池的大小。

当某个资源出现不稳定的情况下,例如响应时间变长,对资源的直接影响就是会造成线程数的逐步堆积。当线程数在特定资源上堆积到一定的数量之后,对该资源的新请求就会被拒绝。堆积的线程完成任务后才开始继续接收请求。

2、通过响应时间对资源进行降级。除了对并发线程数进行控制以外,Sentinel 还可以通过响应时间来快速降级不稳定的资源。当依赖的资源出现响应时间过长后,所有对该资源的访问都会被直接拒绝,直到过了指定的时间窗口之后才重新恢复。

相关推荐
科技互联人生3 小时前
微服务常用的中间件及其用途
微服务·中间件·系统架构
小蜗牛慢慢爬行4 小时前
如何在 Spring Boot 微服务中设置和管理多个数据库
java·数据库·spring boot·后端·微服务·架构·hibernate
小扳6 小时前
微服务篇-深入了解 MinIO 文件服务器(你还在使用阿里云 0SS 对象存储图片服务?教你使用 MinIO 文件服务器:实现从部署到具体使用)
java·服务器·分布式·微服务·云原生·架构
盛派网络小助手14 小时前
微信 SDK 更新 Sample,NCF 文档和模板更新,更多更新日志,欢迎解锁
开发语言·人工智能·后端·架构·c#
aherhuo17 小时前
kubevirt网络
linux·云原生·容器·kubernetes
catoop17 小时前
K8s 无头服务(Headless Service)
云原生·容器·kubernetes
小峰编程18 小时前
独一无二,万字详谈——Linux之文件管理
linux·运维·服务器·云原生·云计算·ai原生
快乐非自愿18 小时前
分布式系统架构2:服务发现
架构·服务发现
小马爱打代码18 小时前
云原生服务网格Istio实战
云原生
2401_8543910819 小时前
SSM 架构中 JAVA 网络直播带货查询系统设计与 JSP 有效实现方法
java·开发语言·架构