flask处理token的装饰器

以下是在 Flask 中基于 token 实现的登录验证装饰器的示例代码:

python 复制代码
import jwt
from functools import wraps
from flask import request, jsonify, current_app

def login_required(f):
    @wraps(f)
    def decorated_function(*args, **kwargs):
        token = request.headers.get('Authorization')
        if not token:
            return jsonify({'message': 'Missing token'}), 401

        try:
            data = jwt.decode(token, current_app.config['SECRET_KEY'], algorithms=['HS256'])
            current_user = data['username']
        except Exception as e:
            return jsonify({'message': 'Invalid token'}), 401

        return f(current_user, *args, **kwargs)

    return decorated_function

该装饰器首先检查请求头中是否存在 Authorization 字段,并解码其中的 token。如果没有找到 token,则返回一个包含错误消息的 JSON 响应。如果找到了 token,则使用 JWT 对其进行解码,同时使用 Flask 的 current_app 对象获取 SECRET_KEY。如果解码成功,那么装饰器会将解码出来的用户名传递给被装饰函数。如果解码失败,则返回一个包含错误消息的 JSON 响应。可以在需要登录验证的视图函数上添加该装饰器,例如:

python 复制代码
@app.route('/protected')
@login_required
def protected(current_user):
    return jsonify({'message': 'This is a protected endpoint for user {}'.format(current_user)})

在上述代码中,protected 视图函数被 @login_required 装饰器进行修饰,当用户成功登录后,该视图函数会返回一个包含当前用户信息的 JSON 响应。需要注意的是,已经登录的用户才能访问该视图函数,否则将返回一个包含错误消息的 JSON 响应。

不过以上内容中涉及了解密参数,如果token并未进行加密可以按照如下方式写:

python 复制代码
from functools import wraps
from flask import request, jsonify
def login_required_token(f):
    @functools.wraps(f)
    def decorated_function(*args, **kwargs):
        token = request.headers.get('Authorization')
        if not token:
            return jsonify({'message': 'Missing token'}), 401

        return f(*args, **kwargs)

    return decorated_function
python 复制代码
@app.route('/logaudit/program/', methods=["POST"])
@login_required_token
def program_log():
    # print("#"*50)
    # print("current user is:",current_user)
    return makeresponse("首页")
   
相关推荐
荣达2 分钟前
koa洋葱模型理解
前端·后端·node.js
天雪浪子14 分钟前
Python入门教程之赋值运算符
开发语言·python
站大爷IP42 分钟前
5个技巧写出专业Python代码:从新手到进阶的实用指南
python
hrrrrb1 小时前
【Python】字符串
java·前端·python
AAA修煤气灶刘哥1 小时前
Kafka 入门不踩坑!从概念到搭环境,后端 er 看完就能用
大数据·后端·kafka
月小水长1 小时前
大模型接入自定义 MCP Server,我开发了个免费使用的基金涨跌归纳和归因分析的 Agent
人工智能·后端
yinke小琪1 小时前
说说hashCode() 和 equals() 之间的关系
java·后端·面试
大翻哥哥1 小时前
Python 2025:低代码开发与自动化运维的新纪元
运维·python·低代码
花果山最Man的男人1 小时前
@Autowired注解使用说明
后端