flask处理token的装饰器

以下是在 Flask 中基于 token 实现的登录验证装饰器的示例代码:

python 复制代码
import jwt
from functools import wraps
from flask import request, jsonify, current_app

def login_required(f):
    @wraps(f)
    def decorated_function(*args, **kwargs):
        token = request.headers.get('Authorization')
        if not token:
            return jsonify({'message': 'Missing token'}), 401

        try:
            data = jwt.decode(token, current_app.config['SECRET_KEY'], algorithms=['HS256'])
            current_user = data['username']
        except Exception as e:
            return jsonify({'message': 'Invalid token'}), 401

        return f(current_user, *args, **kwargs)

    return decorated_function

该装饰器首先检查请求头中是否存在 Authorization 字段,并解码其中的 token。如果没有找到 token,则返回一个包含错误消息的 JSON 响应。如果找到了 token,则使用 JWT 对其进行解码,同时使用 Flask 的 current_app 对象获取 SECRET_KEY。如果解码成功,那么装饰器会将解码出来的用户名传递给被装饰函数。如果解码失败,则返回一个包含错误消息的 JSON 响应。可以在需要登录验证的视图函数上添加该装饰器,例如:

python 复制代码
@app.route('/protected')
@login_required
def protected(current_user):
    return jsonify({'message': 'This is a protected endpoint for user {}'.format(current_user)})

在上述代码中,protected 视图函数被 @login_required 装饰器进行修饰,当用户成功登录后,该视图函数会返回一个包含当前用户信息的 JSON 响应。需要注意的是,已经登录的用户才能访问该视图函数,否则将返回一个包含错误消息的 JSON 响应。

不过以上内容中涉及了解密参数,如果token并未进行加密可以按照如下方式写:

python 复制代码
from functools import wraps
from flask import request, jsonify
def login_required_token(f):
    @functools.wraps(f)
    def decorated_function(*args, **kwargs):
        token = request.headers.get('Authorization')
        if not token:
            return jsonify({'message': 'Missing token'}), 401

        return f(*args, **kwargs)

    return decorated_function
python 复制代码
@app.route('/logaudit/program/', methods=["POST"])
@login_required_token
def program_log():
    # print("#"*50)
    # print("current user is:",current_user)
    return makeresponse("首页")
   
相关推荐
Lxinccode几秒前
python(48) : 命名截图[Windows工具(3)]
开发语言·python·截图·快速截图
cxyxiaokui0011 分钟前
JDK 动态代理 vs CGLIB:原理、区别与 Spring AOP 底层揭秘
java·后端·spring
00后程序员张14 分钟前
Swoole HTTPS 实战,在生产环境部署、性能权衡与排查流程
后端·ios·小程序·https·uni-app·iphone·swoole
我命由我1234523 分钟前
PDFBox - PDDocument 与 byte 数组、PDF 加密
java·服务器·前端·后端·学习·java-ee·pdf
bestcxx28 分钟前
0.2、AI Agent 开发中 ReAct 和 MAS 的概念
人工智能·python·dify·ai agent
考虑考虑35 分钟前
go格式化时间
后端·go
fsnine1 小时前
Python Web框架对比与模型部署
开发语言·前端·python
星球奋斗者1 小时前
计算机方向如何才能更好的找到工作?(成长心得)
java·后端·考研·软件工程·改行学it
海梨花1 小时前
【八股笔记】SSM
java·开发语言·笔记·后端·面试·框架
IT_陈寒1 小时前
Redis性能翻倍的7个冷门技巧:从P5到P8都在偷偷用的优化策略!
前端·人工智能·后端