机器学习-自定义Loss函数

1、简介

机器学习框架中使用自定义的Loss函数,

2、应用

(1)sklearn

python 复制代码
from sklearn.metrics import max_error
from sklearn.metrics import make_scorer
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import Ridge

def custom_loss(y_true, y_pred, **kwargs):
    # Define your custom loss calculation here
    y_true = np.array(y_true)
    y_pred = np.array(y_pred)
    if y_true.ndim == 1 :
        y_true = y_true.reshape((-1, 1))

    if y_pred.ndim == 1:
        y_pred = y_pred.reshape((-1, 1))   
        
    loss = max(y_true-y_pred)
    return loss


data = pd.DataFrame(np.array([[i for i in range(0,300)],[i for i in range(100,400)],[i for i in range(200,500)]]).T,columns=['a','b','c'])

X_train ,y_train = data[['a','b']],data[['c']]
clf = Ridge()

custom_scorer = make_scorer(custom_loss, greater_is_better=False)

# Create and train a model using the custom loss function
# model = Ridge()
scores = cross_val_score(clf, X_train, y_train, cv=5, scoring=custom_scorer)

输出是cv=5,交叉验证的5个结果,评估模型

(2)pycaret

python 复制代码
from pycaret.regression import *
from pycaret.datasets import get_data
import pandas as pd
import numpy as np
from sklearn.metrics import max_error
from sklearn.metrics import make_scorer


def custom_loss(y_true, y_pred, **kwargs):
    # Define your custom loss calculation here
    y_true = np.array(y_true)
    y_pred = np.array(y_pred)
    if y_true.ndim == 1 :
        y_true = y_true.reshape((-1, 1))

    if y_pred.ndim == 1:
        y_pred = y_pred.reshape((-1, 1))   
        
    loss = max(y_true-y_pred)
    return loss

# # load sample dataset
# # data = get_data('insurance')
data = pd.DataFrame(np.array([[i for i in range(0,300)],[i for i in range(100,400)],[i for i in range(200,500)]]).T,columns=['a','b','c'])
s = setup(data, target='c')
# custom_loss = make_scorer(custom_loss)
add_metric('custom_loss', 'Custom Loss', custom_loss)
best = compare_models()
predict_model(best)

3、深度学习框架

(1)torch

python 复制代码
import torch
import torch.nn as nn
import numpy as np
import os

os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"


def get_x_y():
    np.random.seed(0)
    x = np.random.randint(0, 50, 300)
    y_values = 2 * x + 21
    x = np.array(x, dtype=np.float32)
    y = np.array(y_values, dtype=np.float32)
    x = x.reshape(-1, 1)
    y = y.reshape(-1, 1)
    return x, y


class LinearRegressionModel(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(LinearRegressionModel, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim)  # 输入的个数,输出的个数

    def forward(self, x):
        out = self.linear(x)
        return out


class CustomLoss(nn.Module):
    def __init__(self):
        super(CustomLoss, self).__init__()
        self.mse_loss = nn.MSELoss()

    def forward(self, x, y):
        mse_loss = torch.mean(torch.pow((x - y), 2))
        return mse_loss


if __name__ == '__main__':
    input_dim = 1
    output_dim = 1
    x_train, y_train = get_x_y()

    model = LinearRegressionModel(input_dim, output_dim)
    epochs = 1000  # 迭代次数
    optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
    # model_loss = nn.MSELoss() # 使用MSE作为loss
    model_loss = CustomLoss()  # 自定义loss
    # 开始训练模型
    for epoch in range(epochs):
        epoch += 1
        # 注意转行成tensor
        inputs = torch.from_numpy(x_train)
        labels = torch.from_numpy(y_train)
        # 梯度要清零每一次迭代
        optimizer.zero_grad()
        # 前向传播
        outputs: torch.Tensor = model(inputs)
        # 计算损失
        loss = model_loss(outputs, labels)
        # 返向传播
        loss.backward()
        # 更新权重参数
        optimizer.step()
        if epoch % 50 == 0:
            print('epoch {}, loss {}'.format(epoch, loss.item()))

参看:pytorch自定义loss损失函数_python_脚本之家

相关推荐
滨HI01 天前
opencv 计算面积、周长
人工智能·opencv·计算机视觉
OpenBayes1 天前
OCR 新范式!DeepSeek 以「视觉压缩」替代传统字符识别;Bald Classification数据集助力高精度人像分类
人工智能·深度学习·分类·数据挖掘·ocr·数据集·deepseek
亚马逊云开发者1 天前
Agentic AI基础设施实践经验系列(四):MCP服务器从本地到云端的部署演进
人工智能
知识搬运工人1 天前
深入解析U-Net
人工智能
weixin_421133411 天前
深度强化学习,用神经网络代替 Q-table
人工智能·深度学习·神经网络
lx7416026981 天前
面试可能的问题(自用)
人工智能·自然语言处理
数字化脑洞实验室1 天前
智能决策算法的核心原理是什么?
人工智能·算法·机器学习
流烟默1 天前
机器学习中拟合、欠拟合、过拟合是什么
人工智能·算法·机器学习
说私域1 天前
社群时代下的商业变革:“开源AI智能名片链动2+1模式S2B2C商城小程序”的应用与影响
人工智能·小程序·开源
jerryinwuhan1 天前
SVM案例分析
算法·机器学习·支持向量机