数据挖掘具体步骤

数据挖掘具体步骤

1、理解业务与数据

2、准备数据

数据清洗:

缺失值处理:

异常值:

数据标准化:

特征选择:

数据采样处理:

3、数据建模

分类问题:

聚类问题:

回归问题

关联分析

集成学习

image

Bagging(例如随机森林算法)

Boosting

Stacking

4、模型评估

淆矩阵与准确率指标

泛化能力评估

其他模型:

评估数据处理:

5、应用

模型保存:

模型优化:

相关推荐
北京搜维尔科技有限公司17 分钟前
搜维尔科技:【应用】Xsens在荷兰车辆管理局人体工程学评估中的应用
人工智能·安全
说私域20 分钟前
基于开源 AI 智能名片 S2B2C 商城小程序的视频号交易小程序优化研究
人工智能·小程序·零售
YRr YRr20 分钟前
深度学习:Transformer Decoder详解
人工智能·深度学习·transformer
知来者逆25 分钟前
研究大语言模型在心理保健智能顾问的有效性和挑战
人工智能·神经网络·机器学习·语言模型·自然语言处理
云起无垠34 分钟前
技术分享 | 大语言模型赋能软件测试:开启智能软件安全新时代
人工智能·安全·语言模型
老艾的AI世界1 小时前
新一代AI换脸更自然,DeepLiveCam下载介绍(可直播)
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai换脸·视频换脸·直播换脸·图片换脸
翔云API1 小时前
PHP静默活体识别API接口应用场景与集成方案
人工智能
浊酒南街1 小时前
吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)4.9-4.10
人工智能·深度学习·神经网络·cnn
Tony聊跨境2 小时前
独立站SEO类型及优化:来检查这些方面你有没有落下
网络·人工智能·tcp/ip·ip
懒惰才能让科技进步2 小时前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝