数据挖掘具体步骤

数据挖掘具体步骤

1、理解业务与数据

2、准备数据

数据清洗:

缺失值处理:

异常值:

数据标准化:

特征选择:

数据采样处理:

3、数据建模

分类问题:

聚类问题:

回归问题

关联分析

集成学习

image

Bagging(例如随机森林算法)

Boosting

Stacking

4、模型评估

淆矩阵与准确率指标

泛化能力评估

其他模型:

评估数据处理:

5、应用

模型保存:

模型优化:

相关推荐
码银6 分钟前
冲破AI 浪潮冲击下的 迷茫与焦虑
人工智能
何大春10 分钟前
【弱监督语义分割】Self-supervised Image-specific Prototype Exploration for WSSS 论文阅读
论文阅读·人工智能·python·深度学习·论文笔记·原型模式
uncle_ll17 分钟前
PyTorch图像预处理:计算均值和方差以实现标准化
图像处理·人工智能·pytorch·均值算法·标准化
宋1381027972018 分钟前
Manus Xsens Metagloves虚拟现实手套
人工智能·机器人·vr·动作捕捉
SEVEN-YEARS22 分钟前
深入理解TensorFlow中的形状处理函数
人工智能·python·tensorflow
世优科技虚拟人25 分钟前
AI、VR与空间计算:教育和文旅领域的数字转型力量
人工智能·vr·空间计算
cloud studio AI应用31 分钟前
腾讯云 AI 代码助手:产品研发过程的思考和方法论
人工智能·云计算·腾讯云
禁默42 分钟前
第六届机器人、智能控制与人工智能国际学术会议(RICAI 2024)
人工智能·机器人·智能控制
Robot2511 小时前
浅谈,华为切入具身智能赛道
人工智能
只怕自己不够好1 小时前
OpenCV 图像运算全解析:加法、位运算(与、异或)在图像处理中的奇妙应用
图像处理·人工智能·opencv