Redis缓存读写策略(三种)数据结构(5+3)

Redis缓存读写策略(三种)

Cache Aside Pattern(旁路缓存模式)

Cache Aside Pattern 是我们平时使用比较多的一个缓存读写模式,比较适合读请求比较多的场景。

  • 先更新 db
  • 然后直接删除 cache 。

:

  • 从 cache 中读取数据,读取到就直接返回
  • cache 中读取不到的话,就从 db 中读取数据返回
  • 再把数据放到 cache 中。

在写数据的过程中,可以先删除 cache ,后更新 db 么?"

答案: 那肯定是不行的!因为这样可能会造成 数据库(db)和缓存(Cache)数据不一致的问题。

举例:请求 1 先写数据 A,请求 2 随后读数据 A 的话,就很有可能产生数据不一致性的问题。

当你这样回答之后,面试官可能会紧接着就追问:"在写数据的过程中,先更新 db,后删除 cache 就没有问题了么?"

答案: 理论上来说还是可能会出现数据不一致性的问题,不过概率非常小,因为缓存的写入速度是比数据库的写入速度快很多。

举例:请求 1 先读数据 A,请求 2 随后写数据 A,并且数据 A 在请求 1 请求之前不在缓存中的话,也有可能产生数据不一致性的问题。

Cache Aside Pattern 的缺陷

缺陷 1:首次请求数据一定不在 cache 的问题

解决办法:可以将热点数据可以提前放入 cache 中。

缺陷 2:写操作比较频繁的话导致 cache 中的数据会被频繁被删除,这样会影响缓存命中率 。

Read/Write Through Pattern(读写穿透)

写(Write Through):

  • 先查 cache,cache 中不存在,直接更新 db。
  • cache 中存在,则先更新 cache,然后 cache 服务自己更新 db(同步更新 cache 和 db)。

读(Read Through):

  • 从 cache 中读取数据,读取到就直接返回 。
  • 读取不到的话,先从 db 加载,写入到 cache 后返回响应。

Write Behind Pattern(异步缓存写入)

Write Behind Pattern 和 Read/Write Through Pattern 很相似,两者都是由 cache 服务来负责 cache 和 db 的读写。

但是,两个又有很大的不同:Read/Write Through 是同步更新 cache 和 db,而 Write Behind 则是只更新缓存,不直接更新 db,而是改为异步批量的方式来更新 db。

很明显,这种方式对数据一致性带来了更大的挑战,比如 cache 数据可能还没异步更新 db 的话,cache 服务可能就就挂掉了。

这种策略在我们平时开发过程中也非常非常少见,但是不代表它的应用场景少,比如消息队列中消息的异步写入磁盘、MySQL 的 Innodb Buffer Pool 机制都用到了这种策略。

Write Behind Pattern 下 db 的写性能非常高,非常适合一些数据经常变化又对数据一致性要求没那么高的场景,比如浏览量、点赞量。

Redis数据结构(5+3)

5种基本数据结构

String

String 是 Redis 中最简单同时也是最常用的一个数据结构。String 是一种二进制安全的数据结构,可以用来存储任何类型的数据比如字符串、整数、浮点数、图片(图片的 base64 编码或者解码或者图片的路径)、序列化后的对象。

应用场景

需要存储常规数据的场景

  • 举例:缓存 session、token、图片地址、序列化后的对象(相比较于 Hash 存储更节省内存)。
  • 相关命令:SETGET

需要计数的场景

  • 举例:用户单位时间的请求数(简单限流可以用到)、页面单位时间的访问数。
  • 相关命令:SETGETINCRDECR

分布式锁

利用 SETNX key value 命令可以实现一个最简易的分布式锁(存在一些缺陷,通常不建议这样实现分布式锁)。

List(列表)

Redis 的 List 的实现为一个 双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销。

应用场景

信息流展示

  • 举例:最新文章、最新动态。
  • 相关命令:LPUSHLRANGE

消息队列

Redis List 数据结构可以用来做消息队列,只是功能过于简单且存在很多缺陷,不建议这样做。

相对来说,Redis 5.0 新增加的一个数据结构 Stream 更适合做消息队列一些,只是功能依然非常简陋。和专业的消息队列相比,还是有很多欠缺的地方比如消息丢失和堆积问题不好解决。

Hash(哈希)

应用场景

对象数据存储场景

  • 举例:用户信息、商品信息、文章信息、购物车信息。
  • 相关命令:HSET (设置单个字段的值)、HMSET(设置多个字段的值)、HGET(获取单个字段的值)、HMGET(获取多个字段的值)。

Set(集合)

Redis 中的 Set 类型是一种无序集合,集合中的元素没有先后顺序但都唯一,有点类似于 Java 中的 HashSet

应用场景

需要存放的数据不能重复的场景

  • 举例:网站 UV 统计(数据量巨大的场景还是 HyperLogLog更适合一些)、文章点赞、动态点赞等场景。

  • 相关命令:SCARD(获取集合数量) 。

  • 举例:共同好友(交集)、共同粉丝(交集)、共同关注(交集)、好友推荐(差集)、音乐推荐(差集)、订阅号推荐(差集+交集) 等场景。

  • 相关命令:SINTER(交集)、SINTERSTORE (交集)、SUNION (并集)、SUNIONSTORE(并集)、SDIFF(差集)、SDIFFSTORE (差集)。

  • 需要随机获取数据源中的元素的场景

  • 举例:抽奖系统、随机点名等场景。

  • 相关命令:SPOP(随机获取集合中的元素并移除,适合不允许重复中奖的场景)、SRANDMEMBER(随机获取集合中的元素,适合允许重复中奖的场景)。

Sorted Set(有序集合)

Sorted Set 类似于 Set,但和 Set 相比,Sorted Set 增加了一个权重参数 score,使得集合中的元素能够按 score 进行有序排列,还可以通过 score 的范围来获取元素的列表。有点像是 Java 中 HashMapTreeSet 的结合体。

应用场景

需要随机获取数据源中的元素根据某个权重进行排序的场景

  • 举例:各种排行榜比如直播间送礼物的排行榜、朋友圈的微信步数排行榜、王者荣耀中的段位排行榜、话题热度排行榜等等。
  • 相关命令:ZRANGE (从小到大排序)、 ZREVRANGE (从大到小排序)、ZREVRANK (指定元素排名)。

3种特殊数据结构

相关推荐
一叶飘零_sweeeet37 分钟前
从手写 Redis 分布式锁到精通 Redisson:分布式系统的并发控制终极指南
redis·分布式·redisson
睡觉的时候不会困1 小时前
Redis 主从复制详解:原理、配置与主从切换实战
数据库·redis·bootstrap
程序员的世界你不懂3 小时前
【Flask】测试平台开发,新增说明书编写和展示功能 第二十三篇
java·前端·数据库
自学也学好编程3 小时前
【数据库】Redis详解:内存数据库与缓存之王
数据库·redis
JAVA不会写4 小时前
在Mybatis plus中如何使用自定义Sql
数据库·sql
IT 小阿姨(数据库)4 小时前
PgSQL监控死元组和自动清理状态的SQL语句执行报错ERROR: division by zero原因分析和解决方法
linux·运维·数据库·sql·postgresql·centos
ChinaRainbowSea4 小时前
7. LangChain4j + 记忆缓存详细说明
java·数据库·redis·后端·缓存·langchain·ai编程
小马学嵌入式~5 小时前
嵌入式 SQLite 数据库开发笔记
linux·c语言·数据库·笔记·sql·学习·sqlite
Java小白程序员6 小时前
MyBatis基础到高级实践:全方位指南(中)
数据库·mybatis
Monly216 小时前
人大金仓:merge sql error, dbType null, druid-1.2.20
数据库·sql