ElasticSearch安装与介绍

Elastic Stack简介

如果没有听说过Elastic Stack,那你一定听说过ELK,实际上ELK是三款软件的简称,分别是Elasticsearch、 Logstash、Kibana组成,在发展的过程中,又有新成员Beats的加入,所以就形成了Elastic Stack。所以说,ELK是旧的称呼,Elastic Stack是新的名字。

全系的Elastic Stack技术栈包括:

Elasticsearch

Elasticsearch 基于java,是个开源分布式搜索引擎,它的特点有:分布式,零配置,自动发现,索引自动分片,索引副本机制,restful风格接口,多数据源,自动搜索负载等。

Logstash

Logstash 基于java,是一个开源的用于收集,分析和存储日志的工具。

Kibana

Kibana 基于nodejs,也是一个开源和免费的工具,Kibana可以为 Logstash 和 ElasticSearch 提供的日志分析友好的Web 界面,可以汇总、分析和搜索重要数据日志。

Beats

Beats是elastic公司开源的一款采集系统监控数据的代理agent,是在被监控服务器上以客户端形式运行的数据收集器的统称,可以直接把数据发送给Elasticsearch或者通过Logstash发送给Elasticsearch,然后进行后续的数据分析活动。Beats由如下组成:

  • Packetbeat:是一个网络数据包分析器,用于监控、收集网络流量信息,Packetbeat嗅探服务器之间的流量,解析应用层协议,并关联到消息的处理,其支 持ICMP (v4 and v6)、DNS、HTTP、Mysql、PostgreSQL、Redis、MongoDB、Memcache等协议;

  • Filebeat:用于监控、收集服务器日志文件,其已取代 logstash forwarder;

  • Metricbeat:可定期获取外部系统的监控指标信息,其可以监控、收集 Apache、HAProxy、MongoDB MySQL、Nginx、PostgreSQL、Redis、System、Zookeeper等服务;

Beats和Logstash其实都可以进行数据的采集,但是目前主流的是使用Beats进行数据采集,然后使用 Logstash进行数据的分割处理等,早期没有Beats的时候,使用的就是Logstash进行数据的采集。

ElasticSearch快速入门

简介

官网:Elasticsearch Platform --- Find real-time answers at scale | Elastic

选择对应版本的数据,这里我使用的是Linux来进行安装,所以就先下载好ElasticSearch的Linux安装包

拉取Docker容器

因为我们需要部署在Linux下,为了以后迁移ElasticStack环境方便,我们就使用Docker来进行部署,首先我们拉取一个带有ssh的centos docker镜像

复制代码
# 拉取镜像
docker pull moxi/centos_ssh
# 制作容器
docker run --privileged -d -it -h ElasticStack --name ElasticStack -p 11122:22 -p 9200:9200 -p 5601:5601 -p 9300:9300 -v /etc/localtime:/etc/localtime:ro  moxi/centos_ssh /usr/sbin/init

然后直接远程连接11122端口即可

单机版安装

因为ElasticSearch不支持Root用户直接操作,因此我们需要创建一个elsearch用户

复制代码
# 添加新用户
useradd elsearch
​
# 创建一个soft目录,存放下载的软件
mkdir /soft
​
# 进入,然后通过xftp工具,将刚刚下载的文件拖动到该目录下
cd /soft
​
# 解压缩
tar -zxvf elasticsearch-7.9.1-linux-x86_64.tar.gz
​
#重命名
mv elasticsearch-7.9.1/ elsearch

因为刚刚我们是使用root用户操作的,所以我们还需要更改一下/soft文件夹的所属,改为elsearch用户

复制代码
chown elsearch:elsearch /soft/ -R

然后在切换成elsearch用户进行操作

复制代码
# 切换用户
su - elsearch

然后我们就可以对我们的配置文件进行修改了

复制代码
# 进入到 elsearch下的config目录
cd /soft/elsearch/config

然后找到下面的配置

复制代码
#打开配置文件
vim elasticsearch.yml 
​
#设置ip地址,任意网络均可访问
network.host: 0.0.0.0 

在Elasticsearch中如果,network.host不是localhost或者127.0.0.1的话,就会认为是生产环境,会对环境的要求比较高,我们的测试环境不一定能够满足,一般情况下需要修改2处配置,如下:

复制代码
# 修改jvm启动参数
vim conf/jvm.options
​
#根据自己机器情况修改
-Xms128m 
-Xmx128m

然后在修改第二处的配置,这个配置要求我们到宿主机器上来进行配置

复制代码
# 到宿主机上打开文件
vim /etc/sysctl.conf
# 增加这样一条配置,一个进程在VMAs(虚拟内存区域)创建内存映射最大数量
vm.max_map_count=655360
# 让配置生效
sysctl -p

启动ElasticSearch

首先我们需要切换到 elsearch用户

复制代码
su - elsearch

然后在到bin目录下,执行下面

复制代码
# 进入bin目录
cd /soft/elsearch/bin
# 后台启动
./elasticsearch -d

启动成功后,访问下面的URL

复制代码
http://202.193.56.222:9200/

如果出现了下面的信息,就表示已经成功启动了

如果你在启动的时候,遇到过问题,那么请参考下面的错误分析~

错误分析

错误情况1

如果出现下面的错误信息

复制代码
java.lang.RuntimeException: can not run elasticsearch as root
  at org.elasticsearch.bootstrap.Bootstrap.initializeNatives(Bootstrap.java:111)
  at org.elasticsearch.bootstrap.Bootstrap.setup(Bootstrap.java:178)
  at org.elasticsearch.bootstrap.Bootstrap.init(Bootstrap.java:393)
  at org.elasticsearch.bootstrap.Elasticsearch.init(Elasticsearch.java:170)
  at org.elasticsearch.bootstrap.Elasticsearch.execute(Elasticsearch.java:161)
  at org.elasticsearch.cli.EnvironmentAwareCommand.execute(EnvironmentAwareCommand.java:86)
  at org.elasticsearch.cli.Command.mainWithoutErrorHandling(Command.java:127)
  at org.elasticsearch.cli.Command.main(Command.java:90)
  at org.elasticsearch.bootstrap.Elasticsearch.main(Elasticsearch.java:126)
  at org.elasticsearch.bootstrap.Elasticsearch.main(Elasticsearch.java:92)
For complete error details, refer to the log at /soft/elsearch/logs/elasticsearch.log
[root@e588039bc613 bin]# 2020-09-22 02:59:39,537121 UTC [536] ERROR CLogger.cc@310 Cannot log to named pipe /tmp/elasticsearch-5834501324803693929/controller_log_381 as it could not be opened for writing
2020-09-22 02:59:39,537263 UTC [536] INFO  Main.cc@103 Parent process died - ML controller exiting

就说明你没有切换成 elsearch用户,因为不能使用root操作es

复制代码
su - elsearch

错误情况2

复制代码
[1]:max file descriptors [4096] for elasticsearch process is too low, increase to at least[65536]

解决方法:切换到root用户,编辑limits.conf添加如下内容

复制代码
vi /etc/security/limits.conf
​
# ElasticSearch添加如下内容:
* soft nofile 65536
* hard nofile 131072
* soft nproc 2048
* hard nproc 4096

错误情况3

复制代码
[2]: max number of threads [1024] for user [elsearch] is too low, increase to at least
[4096]

也就是最大线程数设置的太低了,需要改成4096

复制代码
#解决:切换到root用户,进入limits.d目录下修改配置文件。
vi /etc/security/limits.d/90-nproc.conf
#修改如下内容:
* soft nproc 1024
#修改为
* soft nproc 4096

错误情况4

复制代码
[3]: system call filters failed to install; check the logs and fix your configuration
or disable system call filters at your own risk

解决:Centos6不支持SecComp,而ES5.2.0默认bootstrap.system_call_filter为true

复制代码
vim config/elasticsearch.yml
# 添加
bootstrap.system_call_filter: false
bootstrap.memory_lock: false

错误情况5

复制代码
[elsearch@e588039bc613 bin]$ Exception in thread "main" org.elasticsearch.bootstrap.BootstrapException: java.nio.file.AccessDeniedException: /soft/elsearch/config/elasticsearch.keystore
Likely root cause: java.nio.file.AccessDeniedException: /soft/elsearch/config/elasticsearch.keystore
  at java.base/sun.nio.fs.UnixException.translateToIOException(UnixException.java:90)
  at java.base/sun.nio.fs.UnixException.rethrowAsIOException(UnixException.java:111)
  at java.base/sun.nio.fs.UnixException.rethrowAsIOException(UnixException.java:116)
  at java.base/sun.nio.fs.UnixFileSystemProvider.newByteChannel(UnixFileSystemProvider.java:219)
  at java.base/java.nio.file.Files.newByteChannel(Files.java:375)
  at java.base/java.nio.file.Files.newByteChannel(Files.java:426)
  at org.apache.lucene.store.SimpleFSDirectory.openInput(SimpleFSDirectory.java:79)
  at org.elasticsearch.common.settings.KeyStoreWrapper.load(KeyStoreWrapper.java:220)
  at org.elasticsearch.bootstrap.Bootstrap.loadSecureSettings(Bootstrap.java:240)
  at org.elasticsearch.bootstrap.Bootstrap.init(Bootstrap.java:349)
  at org.elasticsearch.bootstrap.Elasticsearch.init(Elasticsearch.java:170)
  at org.elasticsearch.bootstrap.Elasticsearch.execute(Elasticsearch.java:161)
  at org.elasticsearch.cli.EnvironmentAwareCommand.execute(EnvironmentAwareCommand.java:86)
  at org.elasticsearch.cli.Command.mainWithoutErrorHandling(Command.java:127)
  at org.elasticsearch.cli.Command.main(Command.java:90)
  at org.elasticsearch.bootstrap.Elasticsearch.main(Elasticsearch.java:126)
  at org.elasticsearch.bootstrap.Elasticsearch.main(Elasticsearch.java:92)
​

我们通过排查,发现是因为 /soft/elsearch/config/elasticsearch.keystore 存在问题

也就是说该文件还是所属于root用户,而我们使用elsearch用户无法操作,所以需要把它变成elsearch

复制代码
chown elsearch:elsearch elasticsearch.keystore

错误情况6

复制代码
[1]: the default discovery settings are unsuitable for production use; at least one of [discovery.seed_hosts, discovery.seed_providers, cluster.initial_master_nodes] must be configured
ERROR: Elasticsearch did not exit normally - check the logs at /soft/elsearch/logs/elasticsearch.log

继续修改配置 elasticsearch.yaml

复制代码
# 取消注释,并保留一个节点
node.name: node-1
cluster.initial_master_nodes: ["node-1"]

ElasticSearchHead可视化工具

由于ES官方没有给ES提供可视化管理工具,仅仅是提供了后台的服务,elasticsearch-head是一个为ES开发的一个页面客户端工具,其源码托管于Github,地址为 传送门

head提供了以下安装方式

  • 源码安装,通过npm run start启动(不推荐)

  • 通过docker安装(推荐)

  • 通过chrome插件安装(推荐)

  • 通过ES的plugin方式安装(不推荐)

通过Docker方式安装

复制代码
#拉取镜像
docker pull mobz/elasticsearch-head:5
#创建容器
docker create --name elasticsearch-head -p 9100:9100 mobz/elasticsearch-head:5
#启动容器
docker start elasticsearch-head

通过浏览器进行访问:

注意: 由于前后端分离开发,所以会存在跨域问题,需要在服务端做CORS的配置,如下:

复制代码
vim elasticsearch.yml
​
http.cors.enabled: true http.cors.allow-origin: "*"

通过chrome插件的方式安装不存在该问题

通过Chrome插件安装

打开chrome的应用商店,即可安装

https://chrome.google.com/webstore/detail/elasticsearch-head/ffmkiejjmecolpfloofpjologoblkegm

建议:推荐使用chrome插件的方式安装,如果网络环境不允许,就采用其它方式安装。

ElasticSearch中的基本概念

索引

  • 索引(index)是Elasticsearch对逻辑数据的逻辑存储,所以它可以分为更小的部分。

  • 可以把索引看成关系型数据库的表,索引的结构是为快速有效的全文索引准备的,特别是它不存储原始值。

  • Elasticsearch可以把索引存放在一台机器或者分散在多台服务器上,每个索引有一或多个分片(shard),每个分片可以有多个副本(replica)。

文档

  • 存储在Elasticsearch中的主要实体叫文档(document)。用关系型数据库来类比的话,一个文档相当于数据库表中的一行记录。

  • Elasticsearch和MongoDB中的文档类似,都可以有不同的结构,但Elasticsearch的文档中,相同字段必须有相同类型。

  • 文档由多个字段组成,每个字段可能多次出现在一个文档里,这样的字段叫多值字段(multivalued)。 每个字段的类型,可以是文本、数值、日期等。字段类型也可以是复杂类型,一个字段包含其他子文档或者数 组。

映射

所有文档写进索引之前都会先进行分析,如何将输入的文本分割为词条、哪些词条又会被过滤,这种行为叫做 映射(mapping)。一般由用户自己定义规则。

文档类型

  • 在Elasticsearch中,一个索引对象可以存储很多不同用途的对象。例如,一个博客应用程序可以保存文章和评 论。

  • 每个文档可以有不同的结构。

  • 不同的文档类型不能为相同的属性设置不同的类型。例如,在同一索引中的所有文档类型中,一个叫title的字段必须具有相同的类型。

RESTful API

在Elasticsearch中,提供了功能丰富的RESTful API的操作,包括基本的CRUD、创建索引、删除索引等操作。

创建非结构化索引

在Lucene中,创建索引是需要定义字段名称以及字段的类型的,在Elasticsearch中提供了非结构化的索引,就是不需要创建索引结构,即可写入数据到索引中,实际上在Elasticsearch底层会进行结构化操作,此操作对用户是透明的。

创建空索引

复制代码
PUT /haoke
{
    "settings": {
        "index": {
        "number_of_shards": "2", #分片数
        "number_of_replicas": "0" #副本数
        }
    }
}

删除索引

复制代码
#删除索引
DELETE /haoke
{
  "acknowledged": true
}

插入数据

URL规则: POST /{索引}/{类型}/{id}

复制代码
POST /haoke/user/1001
#数据
{
"id":1001,
"name":"张三",
"age":20,
"sex":"男"
}

使用postman操作成功后

我们通过ElasticSearchHead进行数据预览就能够看到我们刚刚插入的数据了

更新数据

在Elasticsearch中,文档数据是不为修改的,但是可以通过覆盖的方式进行更新。

复制代码
PUT /haoke/user/1001
{
"id":1001,
"name":"张三",
"age":21,
"sex":"女"
}

更新结果如下:

可以看到数据已经被覆盖了。问题来了,可以局部更新吗? -- 可以的。前面不是说,文档数据不能更新吗? 其实是这样的:在内部,依然会查询到这个文档数据,然后进行覆盖操作,步骤如下:

  1. 从旧文档中检索JSON

  2. 修改它

  3. 删除旧文档

  4. 索引新文档

复制代码
#注意:这里多了_update标识
POST /haoke/user/1001/_update
{
"doc":{
"age":23
}
}

删除一个文档也不会立即从磁盘上移除,它只是被标记成已删除。Elasticsearch将会在你之后添加更多索引的时候才会在后台进行删除内容的清理。【相当于批量操作】

搜索数据

根据id搜索数据

复制代码
GET /haoke/user/BbPe_WcB9cFOnF3uebvr
#返回的数据如下
{
    "_index": "haoke",
    "_type": "user",
    "_id": "BbPe_WcB9cFOnF3uebvr",
    "_version": 8,
    "found": true,
    "_source": { #原始数据在这里
        "id": 1002,
        "name": "李四",
        "age": 40,
        "sex": "男"
        }
}

搜索全部数据

复制代码
GET 1 /haoke/user/_search

注意,使用查询全部数据的时候,默认只会返回10条

关键字搜索数据

复制代码
#查询年龄等于20的用户
GET /haoke/user/_search?q=age:20

结果如下:

DSL搜索

Elasticsearch提供丰富且灵活的查询语言叫做DSL查询(Query DSL),它允许你构建更加复杂、强大的查询。 DSL(Domain Specific Language特定领域语言)以JSON请求体的形式出现。

复制代码
POST /haoke/user/_search
#请求体
{
    "query" : {
        "match" : { #match只是查询的一种
          "age" : 20
        }
    }
}

实现:查询年龄大于30岁的男性用户。

复制代码
POST /haoke/user/_search
#请求数据
{
    "query": {
        "bool": {
            "filter": {
                    "range": {
                        "age": {
                        "gt": 30
                    }
                }
            },
            "must": {
                "match": {
                  "sex": "男"
                }
            }
        }
    }
}

查询出来的结果

全文搜索

复制代码
POST /haoke/user/_search
#请求数据
{
    "query": {
        "match": {
          "name": "张三 李四"
        }
    }
}

高亮显示,只需要在添加一个 highlight即可

复制代码
POST /haoke/user/_search
#请求数据
{
    "query": {
        "match": {
          "name": "张三 李四"
        }
    }
    "highlight": {
        "fields": {
          "name": {}
        }
    }
}

聚合

在Elasticsearch中,支持聚合操作,类似SQL中的group by操作。

复制代码
POST /haoke/user/_search
{
    "aggs": {
        "all_interests": {
            "terms": {
                "field": "age"
            }
        }
    }
}

结果如下,我们通过年龄进行聚合

从结果可以看出,年龄30的有2条数据,20的有一条,40的一条。

ElasticSearch核心详解

文档

在Elasticsearch中,文档以JSON格式进行存储,可以是复杂的结构,如:

复制代码
{
    "_index": "haoke",
    "_type": "user",
    "_id": "1005",
    "_version": 1,
    "_score": 1,
    "_source": {
        "id": 1005,
        "name": "孙七",
        "age": 37,
        "sex": "女",
        "card": {
            "card_number": "123456789"
         }
    }
}

其中,card是一个复杂对象,嵌套的Card对象

元数据(metadata)

一个文档不只有数据。它还包含了元数据(metadata)------关于文档的信息。三个必须的元数据节点是:

指定响应字段

在响应的数据中,如果我们不需要全部的字段,可以指定某些需要的字段进行返回。通过添加 _source

复制代码
GET /haoke/user/1005?_source=id,name
#响应
{
    "_index": "haoke",
    "_type": "user",
    "_id": "1005",
    "_version": 1,
    "found": true,
    "_source": {
        "name": "孙七",
        "id": 1005
     }
}

如不需要返回元数据,仅仅返回原始数据,可以这样:

复制代码
GET /haoke/1 user/1005/_source

当然,这只表示你在查询的那一刻文档不存在,但并不表示几毫秒后依旧不存在。另一个进程在这期间可能创建新文档。

批量操作

有些情况下可以通过批量操作以减少网络请求。如:批量查询、批量插入数据。

批量查询

复制代码
POST /haoke/user/_mget
{
  "ids" : [ "1001", "1003" ]
}

结果:

如果,某一条数据不存在,不影响整体响应,需要通过found的值进行判断是否查询到数据。

复制代码
POST /haoke/user/_mget
{
	"ids" : [ "1001", "1006" ]
}

结果:

也就是说,一个数据的存在不会影响其它数据的返回

_bulk操作

在Elasticsearch中,支持批量的插入、修改、删除操作,都是通过_bulk的api完成的。

请求格式如下:(请求格式不同寻常)

复制代码
{ action: { metadata }}
{ request body }
{ action: { metadata }}
{ request body }
...

批量插入数据:

复制代码
{"create":{"_index":"haoke","_type":"user","_id":2001}}
{"id":2001,"name":"name1","age": 20,"sex": "男"}
{"create":{"_index":"haoke","_type":"user","_id":2002}}
{"id":2002,"name":"name2","age": 20,"sex": "男"}
{"create":{"_index":"haoke","_type":"user","_id":2003}}
{"id":2003,"name":"name3","age": 20,"sex": "男"}

注意最后一行的回车。

批量删除:

复制代码
{"delete":{"_index":"haoke","_type":"user","_id":2001}}
{"delete":{"_index":"haoke","_type":"user","_id":2002}}
{"delete":{"_index":"haoke","_type":"user","_id":2003}}

由于delete没有请求体,所以,action的下一行直接就是下一个action。

其他操作就类似了。一次请求多少性能最高?

  • 整个批量请求需要被加载到接受我们请求节点的内存里,所以请求越大,给其它请求可用的内存就越小。有一 个最佳的bulk请求大小。超过这个大小,性能不再提升而且可能降低。

  • 最佳大小,当然并不是一个固定的数字。它完全取决于你的硬件、你文档的大小和复杂度以及索引和搜索的负 载。

  • 幸运的是,这个最佳点(sweetspot)还是容易找到的:试着批量索引标准的文档,随着大小的增长,当性能开始 降低,说明你每个批次的大小太大了。开始的数量可以在1000~5000个文档之间,如果你的文档非常大,可以使用较小的批次。

  • 通常着眼于你请求批次的物理大小是非常有用的。一千个1kB的文档和一千个1MB的文档大不相同。一个好的 批次最好保持在5-15MB大小间。

分页

和SQL使用LIMIT 关键字返回只有一页的结果一样,Elasticsearch接受from 和size 参数:

  • size: 结果数,默认10

  • from: 跳过开始的结果数,默认0

如果你想每页显示5个结果,页码从1到3,那请求如下:

复制代码
GET /_search?size=5
GET /_search?size=5&from=5
GET /_search?size=5&from=10

应该当心分页太深或者一次请求太多的结果。结果在返回前会被排序。但是记住一个搜索请求常常涉及多个分 片。每个分片生成自己排好序的结果,它们接着需要集中起来排序以确保整体排序正确。

复制代码
GET /haoke/user/_1 search?size=1&from=2
  • string类型在ElasticSearch 旧版本中使用较多,从ElasticSearch 5.x开始不再支持string,由text和 keyword类型替代。

  • text 类型,当一个字段是要被全文搜索的,比如Email内容、产品描述,应该使用text类型。设置text类型 以后,字段内容会被分析,在生成倒排索引以前,字符串会被分析器分成一个一个词项。text类型的字段 不用于排序,很少用于聚合。

  • keyword类型适用于索引结构化的字段,比如email地址、主机名、状态码和标签。如果字段需要进行过 滤(比如查找已发布博客中status属性为published的文章)、排序、聚合。keyword类型的字段只能通过精 确值搜索到。

创建明确类型的索引:

如果你要像之前旧版版本一样兼容自定义 type ,需要将 **i**nclude_type_name=true 携带

复制代码
put http://202.193.56.222:9200/itcast?include_type_name=true
{
    "settings":{
        "index":{
            "number_of_shards":"2",
            "number_of_replicas":"0"
        }
    },
    "mappings":{
        "person":{
            "properties":{
                "name":{
                    "type":"text"
                },
                "age":{
                    "type":"integer"
                },
                "mail":{
                    "type":"keyword"
                },
                "hobby":{
                    "type":"text"
                }
            }
        }
    }
}

查看映射

复制代码
GET /itcast/_mapping

插入数据

复制代码
POST /itcast/_bulk
{"index":{"_index":"itcast","_type":"person"}}
{"name":"张三","age": 20,"mail": "111@qq.com","hobby":"羽毛球、乒乓球、足球"}
{"index":{"_index":"itcast","_type":"person"}}
{"name":"李四","age": 21,"mail": "222@qq.com","hobby":"羽毛球、乒乓球、足球、篮球"}
{"index":{"_index":"itcast","_type":"person"}}
{"name":"王五","age": 22,"mail": "333@qq.com","hobby":"羽毛球、篮球、游泳、听音乐"}
{"index":{"_index":"itcast","_type":"person"}}
{"name":"赵六","age": 23,"mail": "444@qq.com","hobby":"跑步、游泳"}
{"index":{"_index":"itcast","_type":"person"}}
{"name":"孙七","age": 24,"mail": "555@qq.com","hobby":"听音乐、看电影"}

测试搜索

复制代码
POST /itcast/person/_search
{
    "query":{
        "match":{
            "hobby":"音乐"
        }
    }
}

结构化查询

term查询

term 主要用于精确匹配哪些值,比如数字,日期,布尔值或 not_analyzed 的字符串(未经分析的文本数据类型):

复制代码
{ "term": { "age": 26 }}
{ "term": { "date": "2014-09-01" }}
{ "term": { "public": true }}
{ "term": { "tag": "full_text" }}

示例

复制代码
POST /itcast/person/_search
{
    "query":{
        "term":{
            "age":20
        }
    }
}

terms查询

terms 跟 term 有点类似,但 terms 允许指定多个匹配条件。 如果某个字段指定了多个值,那么文档需要一起去 做匹配:

复制代码
{
    "terms":{
        "tag":[
            "search",
            "full_text",
            "nosql"
        ]
    }
}

示例:

复制代码
POST /itcast/person/_search
{
    "query":{
        "terms":{
            "age":[
                20,
                21
            ]
        }
    }
}

range查询

range 过滤允许我们按照指定范围查找一批数据:

复制代码
{
    "range":{
        "age":{
            "gte":20,
            "lt":30
        }
    }
}

范围操作符包含:

  • gt : 大于

  • gte:: 大于等于

  • lt : 小于

  • lte: 小于等于

示例:

复制代码
POST /itcast/person/_search
{
    "query":{
        "range":{
            "age":{
                "gte":20,
                "lte":22
            }
        }
    }
}

exists 查询

exists 查询可以用于查找文档中是否包含指定字段或没有某个字段,类似于SQL语句中的IS_NULL 条件

复制代码
{
    "exists": {
    	"field": "title"
    }
}

这两个查询只是针对已经查出一批数据来,但是想区分出某个字段是否存在的时候使用。示例:

复制代码
POST /haoke/user/_search
{
    "query": {
        "exists": { #必须包含
          "field": "card"
        }
    }
}

match查询

match 查询是一个标准查询,不管你需要全文本查询还是精确查询基本上都要用到它。

如果你使用 match 查询一个全文本字段,它会在真正查询之前用分析器先分析match 一下查询字符:

复制代码
{
    "match": {
    	"tweet": "About Search"
    }
}

如果用match 下指定了一个确切值,在遇到数字,日期,布尔值或者not_analyzed 的字符串时,它将为你搜索你 给定的值:

复制代码
{ "match": { "age": 26 }}
{ "match": { "date": "2014-09-01" }}
{ "match": { "public": true }}
{ "match": { "tag": "full_text" }}

bool查询

  • bool 查询可以用来合并多个条件查询结果的布尔逻辑,它包含一下操作符:

  • must :: 多个查询条件的完全匹配,相当于 and 。

  • must_not :: 多个查询条件的相反匹配,相当于 not 。

  • should :: 至少有一个查询条件匹配, 相当于 or 。

这些参数可以分别继承一个查询条件或者一个查询条件的数组:

复制代码
{
    "bool":{
        "must":{
            "term":{
                "folder":"inbox"
            }
        },
        "must_not":{
            "term":{
                "tag":"spam"
            }
        },
        "should":[
            {
                "term":{
                    "starred":true
                }
            },
            {
                "term":{
                    "unread":true
                }
            }
        ]
    }
}

过滤查询

前面讲过结构化查询,Elasticsearch也支持过滤查询,如term、range、match等。

示例:查询年龄为20岁的用户。

复制代码
POST /itcast/person/_search
{
    "query":{
        "bool":{
            "filter":{
                "term":{
                    "age":20
                }
            }
        }
    }
}

查询和过滤的对比

  • 一条过滤语句会询问每个文档的字段值是否包含着特定值。

  • 查询语句会询问每个文档的字段值与特定值的匹配程度如何。

  • 一条查询语句会计算每个文档与查询语句的相关性,会给出一个相关性评分 _score,并且 按照相关性对匹 配到的文档进行排序。 这种评分方式非常适用于一个没有完全配置结果的全文本搜索。

  • 一个简单的文档列表,快速匹配运算并存入内存是十分方便的, 每个文档仅需要1个字节。这些缓存的过滤结果集与后续请求的结合使用是非常高效的。

  • 查询语句不仅要查找相匹配的文档,还需要计算每个文档的相关性,所以一般来说查询语句要比 过滤语句更耗时,并且查询结果也不可缓存。

建议:

做精确匹配搜索时,最好用过滤语句,因为过滤语句可以缓存数据。

中文分词

什么是分词

分词就是指将一个文本转化成一系列单词的过程,也叫文本分析,在Elasticsearch中称之为Analysis。

举例:我是中国人 --> 我/是/中国人

分词api

指定分词器进行分词

复制代码
POST /_analyze
{
    "analyzer":"standard",
    "text":"hello world"
}

结果如下

在结果中不仅可以看出分词的结果,还返回了该词在文本中的位置。

指定索引分词

复制代码
POST /itcast/_analyze
{
    "analyzer": "standard",
    "field": "hobby",
    "text": "听音乐"
}

中文分词难点

中文分词的难点在于,在汉语中没有明显的词汇分界点,如在英语中,空格可以作为分隔符,如果分隔不正确就会造成歧义。如:

  • 我/爱/炒肉丝

  • 我/爱/炒/肉丝

常用中文分词器,IK、jieba、THULAC等,推荐使用IK分词器。

IK Analyzer是一个开源的,基于java语言开发的轻量级的中文分词工具包。从2006年12月推出1.0版开始,IKAnalyzer已经推出了3个大版本。最初,它是以开源项目Luence为应用主体的,结合词典分词和文法分析算法的中文分词组件。新版本的IK Analyzer 3.0则发展为面向Java的公用分词组件,独立于Lucene项目,同时提供了对Lucene的默认优化实现。

采用了特有的"正向迭代最细粒度切分算法",具有80万字/秒的高速处理能力 采用了多子处理器分析模式,支持:英文字母(IP地址、Email、URL)、数字(日期,常用中文数量词,罗马数字,科学计数法),中文词汇(姓名、地名处理)等分词处理。 优化的词典存储,更小的内存占用。

IK分词器 Elasticsearch插件地址:GitHub - medcl/elasticsearch-analysis-ik: The IK Analysis plugin integrates Lucene IK analyzer into elasticsearch, support customized dictionary.

安装分词器

首先下载到最新的ik分词器:下载地址

下载完成后,使用xftp工具,拷贝到服务器上

复制代码
#安装方法:将下载到的 es/plugins/ik 目录下
mkdir es/plugins/ik

#解压
unzip elasticsearch-analysis-ik-7.9.1.zip

#重启
./bin/elasticsearch

我们通过日志,发现它已经成功加载了ik分词器插件

测试

复制代码
POST /_analyze
{
    "analyzer": "ik_max_word",
    "text": "我是中国人"
}

我们发现ik分词器已经成功分词完成

全文搜索

全文搜索两个最重要的方面是:

  • 相关性(Relevance) 它是评价查询与其结果间的相关程度,并根据这种相关程度对结果排名的一种能力,这 种计算方式可以是 TF/IDF 方法、地理位置邻近、模糊相似,或其他的某些算法。

  • 分词(Analysis) 它是将文本块转换为有区别的、规范化的 token 的一个过程,目的是为了创建倒排索引以及查询倒排索引。

构造数据

ES 7.4 默认不在支持指定索引类型,默认索引类型是_doc

复制代码
http://202.193.56.222:9200/itcast?include_type_name=true
{
    "settings":{
        "index":{
            "number_of_shards":"1",
            "number_of_replicas":"0"
        }
    },
    "mappings":{
        "person":{
            "properties":{
                "name":{
                    "type":"text"
                },
                "age":{
                    "type":"integer"
                },
                "mail":{
                    "type":"keyword"
                },
                "hobby":{
                    "type":"text",
                    "analyzer":"ik_max_word"
                }
            }
        }
    }
}

然后插入数据

复制代码
POST http://202.193.56.222:9200/itcast/_bulk
{"index":{"_index":"itcast","_type":"person"}}
{"name":"张三","age": 20,"mail": "111@qq.com","hobby":"羽毛球、乒乓球、足球"}
{"index":{"_index":"itcast","_type":"person"}}
{"name":"李四","age": 21,"mail": "222@qq.com","hobby":"羽毛球、乒乓球、足球、篮球"}
{"index":{"_index":"itcast","_type":"person"}}
{"name":"王五","age": 22,"mail": "333@qq.com","hobby":"羽毛球、篮球、游泳、听音乐"}
{"index":{"_index":"itcast","_type":"person"}}
{"name":"赵六","age": 23,"mail": "444@qq.com","hobby":"跑步、游泳、篮球"}
{"index":{"_index":"itcast","_type":"person"}}
{"name":"孙七","age": 24,"mail": "555@qq.com","hobby":"听音乐、看电影、羽毛球"}

单词搜索

复制代码
POST /itcast/person/_search
{
    "query":{
        "match":{
            "hobby":"音乐"
        }
    },
    "highlight":{
        "fields":{
            "hobby":{

            }
        }
    }
}

查询出来的结果如下,并且还带有高亮

过程说明:

  • 检查字段类型

    • 爱好 hobby 字段是一个 text 类型( 指定了IK分词器),这意味着查询字符串本身也应该被分词。
  • 分析查询字符串 。

    • 将查询的字符串 "音乐" 传入IK分词器中,输出的结果是单个项 音乐。因为只有一个单词项,所以 match 查询执行的是单个底层 term 查询。
  • 查找匹配文档 。

    • 用 term 查询在倒排索引中查找 "音乐" 然后获取一组包含该项的文档,本例的结果是文档:3 、5 。
  • 为每个文档评分 。

    • 用 term 查询计算每个文档相关度评分 _score ,这是种将 词频(term frequency,即词 "音乐" 在相关文档的hobby 字段中出现的频率)和 反向文档频率(inverse document frequency,即词 "音乐" 在所有文档的hobby 字段中出现的频率),以及字段的长度(即字段越短相关度越高)相结合的计算方式。

多词搜索

复制代码
POST /itcast/person/_search
{
    "query":{
        "match":{
            "hobby":"音乐 篮球"
        }
    },
    "highlight":{
        "fields":{
            "hobby":{

            }
        }
    }
}

可以看到,包含了"音乐"、"篮球"的数据都已经被搜索到了。可是,搜索的结果并不符合我们的预期,因为我们想搜索的是既包含"音乐"又包含"篮球"的用户,显然结果返回的"或"的关系。在Elasticsearch中,可以指定词之间的逻辑关系,如下:

复制代码
POST /itcast/person/_search
{
    "query":{
        "match":{
            "hobby":"音乐 篮球"
            "operator":"and"
        }
    },
    "highlight":{
        "fields":{
            "hobby":{
​
            }
        }
    }
}

通过这样的话,就会让两个关键字之间存在and关系了

可以看到结果符合预期。

前面我们测试了"OR" 和 "AND"搜索,这是两个极端,其实在实际场景中,并不会选取这2个极端,更有可能是选取这种,或者说,只需要符合一定的相似度就可以查询到数据,在Elasticsearch中也支持这样的查询,通过 minimum_should_match来指定匹配度,如:70%;

示例:

复制代码
{
    "query":{
        "match":{
        "hobby":{
            "query":"游泳 羽毛球",
            "minimum_should_match":"80%"
            }
            }
            },
        "highlight": {
        "fields": {
        "hobby": {}
        }
    }
}
#结果:省略显示
"hits": {
"total": 4, #相似度为80%的情况下,查询到4条数据
"max_score": 1.621458,
"hits": [
​
}
#设置40%进行测试:
{
    "query":{
        "match":{
            "hobby":{
            "query":"游泳 羽毛球",
            "minimum_should_match":"40%"
            }
            }
            },
            "highlight": {
            "fields": {
            "hobby": {}
        }
    }
}
​
#结果:
"hits": {
"total": 5, #相似度为40%的情况下,查询到5条数据
"max_score": 1.621458,
"hits": [
​
}

相似度应该多少合适,需要在实际的需求中进行反复测试,才可得到合理的值。

组合搜索

在搜索时,也可以使用过滤器中讲过的bool组合查询,示例:

复制代码
POST /itcast/person/_search
{
    "query":{
        "bool":{
            "must":{
                "match":{
                    "hobby":"篮球"
                }
            },
            "must_not":{
                "match":{
                    "hobby":"音乐"
                }
            },
            "should":[
                {
                    "match":{
                        "hobby":"游泳"
                    }
                }
            ]
        }
    },
    "highlight":{
        "fields":{
            "hobby":{
​
            }
        }
    }
}

上面搜索的意思是: 搜索结果中必须包含篮球,不能包含音乐,如果包含了游泳,那么它的相似度更高。

结果:

评分的计算规则

bool 查询会为每个文档计算相关度评分 _score , 再将所有匹配的 must 和 should 语句的分数 _score 求和,最后除以 must 和 should 语句的总数。

must_not 语句不会影响评分; 它的作用只是将不相关的文档排除。

默认情况下,should中的内容不是必须匹配的,如果查询语句中没有must,那么就会至少匹配其中一个。当然了,也可以通过minimum_should_match参数进行控制,该值可以是数字也可以的百分比。

示例:

复制代码
POST /itcast/person/_search
{
    "query":{
        "bool":{
            "should":[
                {
                    "match":{
                        "hobby":"游泳"
                    }
                },
                {
                    "match":{
                        "hobby":"篮球"
                    }
                },
                {
                    "match":{
                        "hobby":"音乐"
                    }
                }
            ],
            "minimum_should_match":2
        }
    },
    "highlight":{
        "fields":{
            "hobby":{
​
            }
        }
    }
}

minimum_should_match为2,意思是should中的三个词,至少要满足2个。

权重

有些时候,我们可能需要对某些词增加权重来影响该条数据的得分。如下:

搜索关键字为"游泳篮球",如果结果中包含了"音乐"权重为10,包含了"跑步"权重为2。

复制代码
POST /itcast/person/_search
{
    "query":{
        "bool":{
            "must":{
                "match":{
                    "hobby":{
                        "query":"游泳篮球",
                        "operator":"and"
                    }
                }
            },
            "should":[
                {
                    "match":{
                        "hobby":{
                            "query":"音乐",
                            "boost":10
                        }
                    }
                },
                {
                    "match":{
                        "hobby":{
                            "query":"跑步",
                            "boost":2
                        }
                    }
                }
            ]
        }
    },
    "highlight":{
        "fields":{
            "hobby":{
​
            }
        }
    }
}

ElasticSearch集群

集群节点

ELasticsearch的集群是由多个节点组成的,通过cluster.name设置集群名称,并且用于区分其它的集群,每个节点通过node.name指定节点的名称。

在Elasticsearch中,节点的类型主要有4种:

  • master节点

    • 配置文件中node.master属性为true(默认为true),就有资格被选为master节点。master节点用于控制整个集群的操作。比如创建或删除索引,管理其它非master节点等。
  • data节点

    • 配置文件中node.data属性为true(默认为true),就有资格被设置成data节点。data节点主要用于执行数据相关的操作。比如文档的CRUD。
  • 客户端节点

    • 配置文件中node.master属性和node.data属性均为false。

    • 该节点不能作为master节点,也不能作为data节点。

    • 可以作为客户端节点,用于响应用户的请求,把请求转发到其他节点

  • 部落节点

    • 当一个节点配置tribe.*的时候,它是一个特殊的客户端,它可以连接多个集群,在所有连接的集群上执行 搜索和其他操作。

搭建集群

复制代码
#启动3个虚拟机,分别在3台虚拟机上部署安装Elasticsearch
mkdir /itcast/es-cluster
​
#分发到其它机器
scp -r es-cluster elsearch@192.168.40.134:/itcast
​
#node01的配置:
cluster.name: es-itcast-cluster
node.name: node01
node.master: true
node.data: true
network.host: 0.0.0.0
http.port: 9200
discovery.zen.ping.unicast.hosts: ["192.168.40.133","192.168.40.134","192.168.40.135"]
# 最小节点数
discovery.zen.minimum_master_nodes: 2
# 跨域专用
http.cors.enabled: true
http.cors.allow-origin: "*"
​
#node02的配置:
cluster.name: es-itcast-cluster
node.name: node02
node.master: true
node.data: true
network.host: 0.0.0.0
http.port: 9200
discovery.zen.ping.unicast.hosts: ["192.168.40.133","192.168.40.134","192.168.40.135"]
discovery.zen.minimum_master_nodes: 2
http.cors.enabled: true
http.cors.allow-origin: "*"
​
#node03的配置:
cluster.name: es-itcast-cluster
node.name: node02
node.master: true
node.data: true
network.host: 0.0.0.0
http.port: 9200
discovery.zen.ping.unicast.hosts: ["192.168.40.133","192.168.40.134","192.168.40.135"]
discovery.zen.minimum_master_nodes: 2
http.cors.enabled: true
http.cors.allow-origin: "*"
​
#分别启动3个节点
./elasticsearch

查看集群

分发阶段由以下步骤构成:

  1. 协调节点辨别出哪个document需要取回,并且向相关分片发出GET 请求。

  2. 每个分片加载document并且根据需要丰富(enrich)它们,然后再将document返回协调节点。

  3. 一旦所有的document都被取回,协调节点会将结果返回给客户端。

Java客户端

在Elasticsearch中,为java提供了2种客户端,一种是REST风格的客户端,另一种是Java API的客户端

REST客户端

Elasticsearch提供了2种REST客户端,一种是低级客户端,一种是高级客户端。

  • Java Low Level REST Client:官方提供的低级客户端。该客户端通过http来连接Elasticsearch集群。用户在使 用该客户端时需要将请求数据手动拼接成Elasticsearch所需JSON格式进行发送,收到响应时同样也需要将返回的JSON数据手动封装成对象。虽然麻烦,不过该客户端兼容所有的Elasticsearch版本。

  • Java High Level REST Client:官方提供的高级客户端。该客户端基于低级客户端实现,它提供了很多便捷的 API来解决低级客户端需要手动转换数据格式的问题。

构造数据

复制代码
POST /haoke/house/_bulk
​
{"index":{"_index":"haoke","_type":"house"}}
{"id":"1001","title":"整租 · 南丹大楼 1居室 7500","price":"7500"}
{"index":{"_index":"haoke","_type":"house"}}
{"id":"1002","title":"陆家嘴板块,精装设计一室一厅,可拎包入住诚意租。","price":"8500"}
{"index":{"_index":"haoke","_type":"house"}}
{"id":"1003","title":"整租 · 健安坊 1居室 4050","price":"7500"}
{"index":{"_index":"haoke","_type":"house"}}
{"id":"1004","title":"整租 · 中凯城市之光+视野开阔+景色秀丽+拎包入住","price":"6500"}
{"index":{"_index":"haoke","_type":"house"}}
{"id":"1005","title":"整租 · 南京西路品质小区 21213三轨交汇 配套齐* 拎包入住","price":"6000"}
{"index":{"_index":"haoke","_type":"house"}}
{"id":"1006","title":"祥康里 简约风格 *南户型 拎包入住 看房随时","price":"7000"}

REST低级客户端

创建项目,加入依赖

复制代码
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
​
    <groupId>org.example</groupId>
    <artifactId>Study_ElasticSearch_Code</artifactId>
    <version>1.0-SNAPSHOT</version>
    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <configuration>
                    <source>7</source>
                    <target>7</target>
                </configuration>
            </plugin>
        </plugins>
    </build>
​
    <dependencies>
        <dependency>
            <groupId>org.elasticsearch.client</groupId>
            <artifactId>elasticsearch-rest-client</artifactId>
            <version>6.8.5</version>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>com.fasterxml.jackson.core</groupId>
            <artifactId>jackson-databind</artifactId>
            <version>2.11.1</version>
        </dependency>
    </dependencies>
</project>

编写测试类

复制代码
import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.http.HttpHost;
import org.apache.http.util.EntityUtils;
import org.elasticsearch.client.Request;
import org.elasticsearch.client.Response;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
​
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
​
/**
 * 使用低级客户端 访问
 *
 * @author: 陌溪
 * @create: 2020-09-23-16:33
 */
public class ESApi {
    private RestClient restClient;
    private static final ObjectMapper MAPPER = new ObjectMapper();
​
    /**
     * 初始化
     */
    public void init() {
        RestClientBuilder restClientBuilder = RestClient.builder(new HttpHost("202.193.56.222", 9200, "http"));
        this.restClient = restClientBuilder.build();
    }
​
    /**
     * 查询集群状态
     */
    public void testGetInfo() throws IOException {
        Request request = new Request("GET", "/_cluster/state");
        request.addParameter("pretty", "true");
        Response response = this.restClient.performRequest(request);
        System.out.println(response.getStatusLine());
        System.out.println(EntityUtils.toString(response.getEntity()));
    }
​
    /**
     * 根据ID查询数据
     * @throws IOException
     */
    public void testGetHouseInfo() throws IOException {
        Request request = new Request("GET", "/haoke/house/Z3CduXQBYpWein3CRFug");
        request.addParameter("pretty", "true");
        Response response = this.restClient.performRequest(request);
        System.out.println(response.getStatusLine());
        System.out.println(EntityUtils.toString(response.getEntity()));
    }
​
    public void testCreateData() throws IOException {
        Request request = new Request("POST", "/haoke/house");
        Map<String, Object> data = new HashMap<>();
        data.put("id", "2001");
        data.put("title", "张江高科");
        data.put("price", "3500");
        // 写成JSON
        request.setJsonEntity(MAPPER.writeValueAsString(data));
        Response response = this.restClient.performRequest(request);
        System.out.println(response.getStatusLine());
        System.out.println(EntityUtils.toString(response.getEntity()));
​
    }
​
    // 搜索数据
    public void testSearchData() throws IOException {
        Request request = new Request("POST", "/haoke/house/_search");
        String searchJson = "{\"query\": {\"match\": {\"title\": \"拎包入住\"}}}";
        request.setJsonEntity(searchJson);
        request.addParameter("pretty","true");
        Response response = this.restClient.performRequest(request);
        System.out.println(response.getStatusLine());
        System.out.println(EntityUtils.toString(response.getEntity()));
    }
​
    public static void main(String[] args) throws IOException {
        ESApi esApi = new ESApi();
        esApi.init();
//        esApi.testGetInfo();
//        esApi.testGetHouseInfo();
        esApi.testCreateData();
    }
}

REST高级客户端

创建项目,引入依赖

复制代码
<dependency>
    <groupId>org.elasticsearch.client</groupId>
    <artifactId>elasticsearch-rest-high-level-client</artifactId>
    <version>6.8.5</version>
</dependency>

编写测试用例

复制代码
import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.http.HttpHost;
import org.apache.http.util.EntityUtils;
import org.elasticsearch.action.ActionListener;
import org.elasticsearch.action.delete.DeleteRequest;
import org.elasticsearch.action.delete.DeleteResponse;
import org.elasticsearch.action.get.GetRequest;
import org.elasticsearch.action.get.GetResponse;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.action.index.IndexResponse;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.action.update.UpdateRequest;
import org.elasticsearch.action.update.UpdateResponse;
import org.elasticsearch.client.*;
import org.elasticsearch.common.Strings;
import org.elasticsearch.common.unit.TimeValue;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.elasticsearch.search.fetch.subphase.FetchSourceContext;
​
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.TimeUnit;
​
/**
 * ES高级客户端
 *
 * @author: 陌溪
 * @create: 2020-09-23-16:56
 */
public class ESHightApi {
    private RestHighLevelClient client;
​
    public void init() {
        RestClientBuilder restClientBuilder = RestClient.builder(
                new HttpHost("202.193.56.222", 9200, "http"));
        this.client = new RestHighLevelClient(restClientBuilder);
    }
​
    public void after() throws Exception {
        this.client.close();
    }
​
    /**
     * 新增文档,同步操作
     *
     * @throws Exception
     */
    public void testCreate() throws Exception {
        Map<String, Object> data = new HashMap<>();
        data.put("id", "2002");
        data.put("title", "南京西路 拎包入住 一室一厅");
        data.put("price", "4500");
        IndexRequest indexRequest = new IndexRequest("haoke", "house")
                .source(data);
        IndexResponse indexResponse = this.client.index(indexRequest,
                RequestOptions.DEFAULT);
        System.out.println("id->" + indexResponse.getId());
        System.out.println("index->" + indexResponse.getIndex());
        System.out.println("type->" + indexResponse.getType());
        System.out.println("version->" + indexResponse.getVersion());
        System.out.println("result->" + indexResponse.getResult());
        System.out.println("shardInfo->" + indexResponse.getShardInfo());
    }
​
    /**
     * 异步创建文档
     * @throws Exception
     */
    public void testCreateAsync() throws Exception {
        Map<String, Object> data = new HashMap<>();
        data.put("id", "2003");
        data.put("title", "南京东路 最新房源 二室一厅");
        data.put("price", "5500");
        IndexRequest indexRequest = new IndexRequest("haoke", "house")
                .source(data);
        this.client.indexAsync(indexRequest, RequestOptions.DEFAULT, new
                ActionListener<IndexResponse>() {
                    @Override
                    public void onResponse(IndexResponse indexResponse) {
                        System.out.println("id->" + indexResponse.getId());
                        System.out.println("index->" + indexResponse.getIndex());
                        System.out.println("type->" + indexResponse.getType());
                        System.out.println("version->" + indexResponse.getVersion());
                        System.out.println("result->" + indexResponse.getResult());
                        System.out.println("shardInfo->" + indexResponse.getShardInfo());
                    }
                    @Override
                    public void onFailure(Exception e) {
                        System.out.println(e);
                    }
                });
        System.out.println("ok");
        Thread.sleep(20000);
    }
​
    /**
     * 查询
     * @throws Exception
     */
    public void testQuery() throws Exception {
        GetRequest getRequest = new GetRequest("haoke", "house",
                "GkpdE2gBCKv8opxuOj12");
        // 指定返回的字段
        String[] includes = new String[]{"title", "id"};
        String[] excludes = Strings.EMPTY_ARRAY;
        FetchSourceContext fetchSourceContext =
                new FetchSourceContext(true, includes, excludes);
        getRequest.fetchSourceContext(fetchSourceContext);
        GetResponse response = this.client.get(getRequest, RequestOptions.DEFAULT);
        System.out.println("数据 -> " + response.getSource());
    }
​
    /**
     * 判断是否存在
     *
     * @throws Exception
     */
    public void testExists() throws Exception {
        GetRequest getRequest = new GetRequest("haoke", "house",
                "GkpdE2gBCKv8opxuOj12");
// 不返回的字段
        getRequest.fetchSourceContext(new FetchSourceContext(false));
        boolean exists = this.client.exists(getRequest, RequestOptions.DEFAULT);
        System.out.println("exists -> " + exists);
    }
    /**
     * 删除数据
     *
     * @throws Exception
     */
    public void testDelete() throws Exception {
        DeleteRequest deleteRequest = new DeleteRequest("haoke", "house",
                "GkpdE2gBCKv8opxuOj12");
        DeleteResponse response = this.client.delete(deleteRequest,
                RequestOptions.DEFAULT);
        System.out.println(response.status());// OK or NOT_FOUND
    }
    /**
     * 更新数据
     *
     * @throws Exception
     */
    public void testUpdate() throws Exception {
        UpdateRequest updateRequest = new UpdateRequest("haoke", "house",
                "G0pfE2gBCKv8opxuRz1y");
        Map<String, Object> data = new HashMap<>();
        data.put("title", "张江高科2");
        data.put("price", "5000");
        updateRequest.doc(data);
        UpdateResponse response = this.client.update(updateRequest,
                RequestOptions.DEFAULT);
        System.out.println("version -> " + response.getVersion());
    }
    /**
     * 测试搜索
     *
     * @throws Exception
     */
    public void testSearch() throws Exception {
        SearchRequest searchRequest = new SearchRequest("haoke");
        searchRequest.types("house");
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
        sourceBuilder.query(QueryBuilders.matchQuery("title", "拎包入住"));
        sourceBuilder.from(0);
        sourceBuilder.size(5);
        sourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS));
        searchRequest.source(sourceBuilder);
        SearchResponse search = this.client.search(searchRequest,
                RequestOptions.DEFAULT);
        System.out.println("搜索到 " + search.getHits().totalHits + " 条数据.");
        SearchHits hits = search.getHits();
        for (SearchHit hit : hits) {
            System.out.println(hit.getSourceAsString());
        }
    }
​
    public static void main(String[] args) throws Exception {
        ESHightApi esHightApi = new ESHightApi();
        esHightApi.init();
        esHightApi.testCreate();
    }
}
相关推荐
huaqianzkh20 分钟前
了解Hadoop:大数据处理的核心框架
大数据·hadoop·分布式
Kika写代码44 分钟前
【Hadoop】【hdfs】【大数据技术基础】实验三 HDFS 基础编程实验
大数据·hadoop·hdfs
okmacong3 小时前
2024.11.12_大数据的诞生以及解决的问题
大数据
Java资深爱好者5 小时前
数据湖与数据仓库的区别
大数据·数据仓库·spark
heromps5 小时前
hadoop报错找不到主类
大数据·hadoop·eclipse
未 顾7 小时前
day12:版本控制器
大数据·elasticsearch·搜索引擎
CherishTaoTao7 小时前
Git别名设置
大数据·git
Dreams°1238 小时前
【大数据测试HBase数据库 — 详细教程(含实例与监控调优)】
大数据·功能测试·单元测试
Elastic 中国社区官方博客12 小时前
Lucene 和 Elasticsearch 中更好的二进制量化 (BBQ)
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·lucene