AI 绘画Stable Diffusion 研究(八)sd采样方法详解

大家好,我是风雨无阻。

本文适合人群:

  • 希望了解stable Diffusion WebUI中提供的Sampler究竟有什么不同,想知道如何选用合适采样器以进一步提高出图质量的朋友。

  • 想要进一步了解AI绘图基本原理的朋友。

  • 对stable diffusion AI绘图感兴趣的朋友。

本期内容:

  • 什么是采样方法 ?
  • 采样方法的分类有哪些?
  • 采样方法详细介绍
  • 哪个采样器最好?我们该如何选择?

在 Stable Diffusion中目前已经有22种 Sampling method 采样方法 ,不同的采样方法对出图效果有不同的影响。今天,我将详细介绍这22种采样方法,以及如何选择合适的采样方法。

一、什么是采样 ?

在了解采样之前,我们得先了解 一下Stable Diffusion webui 是如何工作的,建议看看我之前的AI 绘画Stable Diffusion 研究(七)sd webui如何工作这篇文章。

我们知道 sd webui 生成图像,大致会经过以下过程:

1、为了生成图像, Stable Diffusion 会在潜在空间中生成一个完全随机的图像

2、噪声预测器会估算图像的噪声

3、噪声预测器从图像中减去预测的噪声

4、这个过程反复重复 N 次以后,会得到一个干净准确的图像

这个去噪的过程,就被称为采样。

Stable Diffusion 在这个去噪过程中,会生成一个新的样本图像。

采样中使用的方法 被称为 Sampling method (采样方法或者是采样器)。

增加采样步骤 Sampling steps 有什么影响呢?

步骤越多,每个步骤降噪越小 。这样可以减少采样过程中的截断误差。

目前Stable Diffusion 中有 22 个采样器可以使用 。

二、采样器的分类

这些采样器有什么区别呢?

为了便于使用和理解,我们可以将这些采样方法进行分类:

(1)、传统的常微分方程求解器(ODE solvers )

包含:Euler \Heun \LMS

这三个方法历史悠久,被认为是最简单,但是不太准确的采样器。

(2)、祖先采样器 (名称中有一个字母 a 的)

包含 :Euler a \ DPM2 a \DPM++2S a \DPM2 a Karras \DPM++2S a Karras

这些采样器会在每个采样步骤中,向图像添加噪声 ,这些是祖先采样器,因为在采样结果中

具有一定的随机性。

这些采样器的缺点是,图像不会收敛。

(3)、最初官方采样器 (最初随sd v1版本发布的采样器)

DDIM、PLMS

DDIM 是为扩散模型设计的第一个采样器, PLMS 则是DDIM 更快速的替代品

(4)、DPM 和 DPM++ 系列

DPM 和 DPM++ 系列 是2022年发布的用于扩散模型的新采样器 ,它们具有相似的结构,但DPM2比DPM 更准确,不过速度较慢。

DPM++ 是对DPM 的改进,可以自适应地调整步长,但可能会很慢,并且不能保证在规定数量的采样步骤内完成。

(5)、带有Karras字样的采样器

这些采样器使用了噪声时间表 (noise schedule ),控制每个采样步骤中的噪声水平,并随着采样步骤的增加,减少了截断误差。

(6)、UniPC采样器

这UniPC采样器是2023年发布的新采样器,根据 ode 求解器中预测校正方法的启发,可在5-10步内实现高质量图像生成。

了解了以上采样器的分类,相信大家对选择采样器,已经可以缩小选择的范围了。

三、采样器方法详解

接下来我们根据 Stable Diffusion WebUI 中采样器的顺序,对每个采样器进行详细介绍。

1、Euler a

祖先采样器的一种 , 类似于 Euler ,但在每个步骤中它会减去比"应该"更多的噪声。并添加一些随机噪声以匹配噪声计划。去噪图像取决于前面步骤中添加的特定噪声。

2、Euler

最简单的采样器,在采样过程中不添加随机噪声,通过噪声计划告诉采样器,每个步骤中应该有多少噪声。并使用欧拉方法减少恰当数量的噪声。以匹配噪声计划,直到最后一步为0 为止。

3、LMS 解决常微分方程的标准方法

LMS采样速度与Euler 相同 。

4、Heum

Heum 是对Euler 更精确的改进,但是需要在每个步骤中预测两次噪声。

因此速度比Euler 慢2倍。

5、DPM2

dpm2 是Katherine Crowson在K-diffusion项目中自创的 ,灵感来源Karras论文中的DPM-Solver-2和算法2 ,受采样器设置页面中的 sigma参数影响。

6、DPM2 a

祖先采样器的一种,使用 DPM2 方法 ,受采样器设置中的ETA参数影响 。

7、DPM++2S a

随机采样器一种

在K-diffusion实现的2阶单步并受采样器设置中的ETA参数影响。

8、 DPM++2M

在Kdiffusion实现的2阶多步采样方法,在Hagging face Diffusers中被称作已知最强调度器。在速度和质量的平衡最好。这个代表m的多步比上面的s单步,在采样时会参考更多步,而非当前步,所以能提供更好的质量,但是也更复杂。

9、 DPM++SDE

DPM++的SDE版本,DPM++ 原本是0DE 求解器及常微分方程在Ktifusion实现的版本,代码中调用了随机采样方法,所以受采样器设置中的ETA参数影响。

10、 DPM fast

在Ktifusion实现的固定步长采样方法 ,用于steps小于20的情况。受采样器设置中的ETA参数影响。

11、 DPM adaptive

在K-diffusion 实现的自适应步长采样方法,DPM-Solver-12 和23,受采样器设置中的ETA参数影响。

12、带有Karras字样的6种采样器

LMS karras 、DPM2 karras 、DPM2 a karras 、DPM++ 2S a karras 、DPM++2M karras、DPM++ SDE karras 、DPM++2M SDE karras

这些含有Karras名字的采样方法 都是相当于 Karras噪声时间表的版本。

13 、DDIM

官方采样器之一,使用去噪后的图像来近似最终图像,并使用噪声预测器估计的噪声,来近似图像方向。

14、PLMS

官方采样器之一,PLMS则是DDIM的新版且更快速的替代品。

15、unipc

最新添加的采样器,应该是目前最快最新的采样方法,10步内实现高质量图像。

四、哪个采样器最好?我们该如何选择?

以下是我的建议:

  • 如果想快速生成质量不错的图片,建议选择 DPM++ 2M Karras (20 -30步) 、UNIPC (15-25步)
  • 如果想要高质量的图,不关心重现性,建议选择 DPM++ SDE Karras (10-15步 较慢) ,DDIM(10-15步 较快)
  • 如果想要简单的图,建议选择 Euler,Heun(可以减少步骤以节省时间)
  • 如果想要稳定可重现的图像,请避免选择任何祖先采样器(名字里面带a或SDE)
  • 相反,如果想要每次生成不一样的图像,可以选择不收敛的祖先采样器(名字里面带a或SDE)
相关推荐
AttackingLin12 分钟前
好好说话:深度学习扫盲
人工智能·深度学习
茕离1 小时前
b站——《【强化学习】一小时完全入门》学习笔记及代码(1-3 多臂老虎机)
人工智能·笔记·学习
pchmi1 小时前
C# OpenCV机器视觉:SoftNMS非极大值抑制
人工智能·opencv·c#·机器视觉·opencvsharp
子午1 小时前
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
人工智能·python·深度学习
Jack_hrx1 小时前
DeepSeek 深度解析:引领 SEO 与数据分析新时代的智能工具
人工智能·数据挖掘·数据分析·seo·deepseek
2的n次方_1 小时前
快速部署 DeepSeek R1 模型
人工智能·自然语言处理·deepseek
徐行tag1 小时前
三角测量——用相机运动估计特征点的空间位置
人工智能·数码相机·视觉slam
qq_273900234 小时前
AF3 superimpose函数解读
人工智能·深度学习·机器学习·生物信息学
xwz小王子7 小时前
Nature Machine Intelligence 提出了LEGION的机器人终身强化学习框架
人工智能·机器人
老大白菜8 小时前
使用 DeepSeek 进行图像描述:多模态 AI 技术实践
人工智能