ELK常见部署架构以及出现的问题及解决方案

ELK常见部署架构以及出现的问题及解决方案

ELK 已经成为目前最流行的集中式日志解决方案,它主要是由BeatsLogstashElasticsearch

Kibana 等组件组成,来共同完成实时日志的收集,存储,展示等一站式的解决方案。本文将会介绍ELK常见的架

构以及相关问题解决。

Filebeat :Filebeat是一款轻量级,占用服务资源非常少的数据收集引擎,它是ELK家族的新成员,可以代替

Logstash作为在应用服务器端的日志收集引擎,支持将收集到的数据输出到Kafka,Redis等队列。

Logstash :数据收集引擎,相较于Filebeat比较重量级,但它集成了大量的插件,支持丰富的数据源收集,

对收集的数据可以过滤,分析,格式化日志格式。

Elasticsearch :分布式数据搜索引擎,基于Apache Lucene实现,可集群,提供数据的集中式存储,分析,

以及强大的数据搜索和聚合功能。

Kibana :数据的可视化平台,通过该web平台可以实时的查看 Elasticsearch 中的相关数据,并提供了丰富

的图表统计功能。

1、ELK常见部署架构

1.1 Logstash作为日志收集器

这种架构是比较原始的部署架构,在各应用服务器端分别部署一个Logstash组件,作为日志收集器,然后将

Logstash收集到的数据过滤、分析、格式化处理后发送至Elasticsearch存储,最后使用Kibana进行可视化展示。

这种架构不足的是:Logstash比较耗服务器资源,所以会增加应用服务器端的负载压力。

1.2 Filebeat作为日志收集器

该架构与第一种架构唯一不同的是:应用端日志收集器换成了Filebeat,Filebeat轻量,占用服务器资源少,所以

使用Filebeat作为应用服务器端的日志收集器,一般Filebeat会配合Logstash一起使用,这种部署方式也是目前最

常用的架构。

1.3 引入缓存队列的部署架构

该架构在第二种架构的基础上引入了Kafka消息队列(还可以是其他消息队列),将Filebeat收集到的数据发送至

Kafka,然后在通过Logstasth读取Kafka中的数据,这种架构主要是解决大数据量下的日志收集方案,使用缓存队

列主要是解决数据安全与均衡Logstash与Elasticsearch负载压力。

1.4 以上三种架构的总结

第一种部署架构由于资源占用问题,现已很少使用,目前使用最多的是第二种部署架构,至于第三种部署架构个人

觉得没有必要引入消息队列,除非有其他需求,因为在数据量较大的情况下,Filebeat 使用压力敏感协议向

Logstash 或 Elasticsearch 发送数据。

如果 Logstash 正在繁忙地处理数据,它会告知 Filebeat 减慢读取速度。拥塞解决后,Filebeat 将恢复初始速度并

继续发送数据。

2、问题及解决方案

2.1 如何实现日志的多行合并功能?

系统应用中的日志一般都是以特定格式进行打印的,属于同一条日志的数据可能分多行进行打印,那么在使用ELK

收集日志的时候就需要将属于同一条日志的多行数据进行合并。

解决方案:使用Filebeat或Logstash中的multiline多行合并插件来实现

在使用multiline多行合并插件的时候需要注意,不同的ELK部署架构可能multiline的使用方式也不同,如果是本

文的第一种部署架构,那么multiline需要在Logstash中配置使用,如果是第二种部署架构,那么multiline需要

在Filebeat中配置使用,无需再在Logstash中配置multiline

1、multiline在Filebeat中的配置方式:

yaml 复制代码
filebeat.prospectors:
    -
     paths:
          - /home/project/elk/logs/test.log
     input_type: log
     multiline:
      pattern: '^\['
      negate: true
      match: after
output:
   logstash:
      hosts: ["localhost:5044"]
  • pattern:正则表达式
  • negate:默认为false,表示匹配pattern的行合并到上一行;true表示不匹配pattern的行合并到上一行
  • match:after表示合并到上一行的末尾,before表示合并到上一行的行首

如:

yaml 复制代码
pattern: '\['
negate: true
match: after

该配置表示将不匹配pattern模式的行合并到上一行的末尾。

2、multiline在Logstash中的配置方式

yaml 复制代码
input {
    beats {
    port => 5044
}
}

filter {
    multiline {
        pattern => "%{LOGLEVEL}\s*\]"
        negate => true
        what => "previous"
    }
}

output {
    elasticsearch {
    hosts => "localhost:9200"
    }
}

(1)Logstash中配置的what属性值为previous,相当于Filebeat中的after,Logstash中配置的what属性值为

next,相当于Filebeat中的before。

(2)pattern => "%{LOGLEVEL}\s*\]" 中的LOGLEVEL 是Logstash预制的正则匹配模式,预制的还有好多常

用的正则匹配模式,详细请看:

https://github.com/logstash-plugins/logstash-patterns-core/tree/master/patterns

2.2 如何将Kibana中显示日志的时间字段替换为日志信息中的时间?

默认情况下,我们在Kibana中查看的时间字段与日志信息中的时间不一致,因为默认的时间字段值是日志收集时

的当前时间,所以需要将该字段的时间替换为日志信息中的时间。

解决方案:使用grok分词插件与date时间格式化插件来实现

Logstash的配置文件的过滤器中配置grok分词插件与date时间格式化插件,如:

yaml 复制代码
input {
    beats {
    port => 5044
    }
}

filter {
    multiline {
        pattern => "%{LOGLEVEL}\s*\]\[%{YEAR}%{MONTHNUM}%{MONTHDAY}\s+%{TIME}\]"
        negate => true
        what => "previous"
}

# 时间格式配置
grok {
 match => [ "message" , "(?<customer_time>%{YEAR}%{MONTHNUM}%{MONTHDAY}\s+%{TIME})" ]
}

# 时间格式配置
date {
	 # 格式化时间
     match => ["customer_time", "yyyyMMdd HH:mm:ss,SSS"]
     # 替换默认的时间字段
     target => "@timestamp"
    }
}

output {
    elasticsearch {
    hosts => "localhost:9200"
    }
}

如要匹配的日志格式为:

tex 复制代码
[DEBUG][20170811 10:07:31,359][DefaultBeanDefinitionDocumentReader:106] Loading bean definitions

解析出该日志的时间字段的方式有:

①、通过引入写好的表达式文件,如表达式文件为./customer-patterms/mypatterns,内容为:

CUSTOMER_TIME %{YEAR}%{MONTHNUM}%{MONTHDAY}\s+%{TIME}

注: 内容格式为:[自定义表达式名称] [正则表达式]

然后logstash中就可以这样引用:

yaml 复制代码
filter {
    grok {
    # 引用表达式文件路径
    patterns_dir => ["./customer-patterms/mypatterns"]
    # 使用自定义的grok表达式
    match => [ "message" , "%{CUSTOMER_TIME:customer_time}" ]
    }
}

②、以配置项的方式,规则为:(?<自定义表达式名称>正则匹配规则),如:

yaml 复制代码
filter {
    grok {
    match => [ "message" , "(?<customer_time>%{YEAR}%{MONTHNUM}%{MONTHDAY}\s+%{TIME})" ]
    }
}

2.3 如何在Kibana中通过选择不同的系统日志模块来查看数据?

一般在Kibana中显示的日志数据混合了来自不同系统模块的数据,那么如何来选择或者过滤只查看指定的系统模

块的日志数据?

解决方案:新增标识不同系统模块的字段或根据不同系统模块建ES索引

1、新增标识不同系统模块的字段,然后在Kibana中可以根据该字段来过滤查询不同模块的数据,这里以第二种部

署架构讲解,在Filebeat中的配置内容为:

yaml 复制代码
filebeat.prospectors:
    -
   paths:
  - /home/project/elk/logs/account.log
   input_type: log
     multiline:
      pattern: '^\['
      negate: true
      match: after
   fields: 
      log_from: account

    -
   paths:
  - /home/project/elk/logs/customer.log
   input_type: log
   multiline:
      pattern: '^\['
      negate: true
      match: after
   fields:
      log_from: customer

output:
   logstash:
      hosts: ["localhost:5044"]

通过新增:log_from字段来标识不同的系统模块日志

2、根据不同的系统模块配置对应的ES索引,然后在Kibana中创建对应的索引模式匹配,即可在页面通过索引模式

下拉框选择不同的系统模块数据。

yaml 复制代码
filebeat.prospectors:
    -
   paths:
  - /home/project/elk/logs/account.log
     input_type: log
     multiline:
      pattern: '^\['
      negate: true
      match: after
   fields: 
      log_from: account
    -
   paths:
  - /home/project/elk/logs/customer.log
   input_type: log
   multiline:
      pattern: '^\['
      negate: true
      match: after
   fields:
      log_from: customer
output:
   logstash:
      hosts: ["localhost:5044"]

通过新增:log_from字段来标识不同的系统模块日志

这里以第二种部署架构讲解,分为两步:

①、在Filebeat中的配置内容为:

yaml 复制代码
filebeat.prospectors:
    -
     paths:
      - /home/project/elk/logs/account.log
     input_type: log
     multiline:
       pattern: '^\['
       negate: true
       match: after
     document_type: account

    -
     paths:
      - /home/project/elk/logs/customer.log
     input_type: log
     multiline:
       pattern: '^\['
       negate: true
       match: after
     document_type: customer
output:
    logstash:
    hosts: ["localhost:5044"]

通过document_type来标识不同系统模块

②、修改Logstashoutput的配置内容为:

yaml 复制代码
output {
    elasticsearch {
    hosts => "localhost:9200"
    index => "%{type}"
    }
}

output中增加index属性,%{type}表示按不同的document_type值建ES索引

3、总结

本文主要介绍了ELK实时日志分析的三种部署架构,以及不同架构所能解决的问题,这三种架构中第二种部署方式

是时下最流行也是最常用的部署方式。

最后介绍了ELK作在日志分析中的一些问题与解决方案,说在最后,ELK不仅仅可以用来作为分布式日志数据集中

式查询和管理,还可以用来作为项目应用以及服务器资源监控等场景,更多内容请看官网。

相关推荐
Karoku0664 小时前
【企业级分布式系统】ELK优化
运维·服务器·数据库·elk·elasticsearch
上优6 小时前
uniapp 选择 省市区 省市 以及 回显
大数据·elasticsearch·uni-app
jwolf28 小时前
Elasticsearch向量搜索:从语义搜索到图搜图只有一步之遥
elasticsearch·搜索引擎·ai
你可以叫我仔哥呀9 小时前
ElasticSearch学习笔记三:基础操作(一)
笔记·学习·elasticsearch
hummhumm10 小时前
第 25 章 - Golang 项目结构
java·开发语言·前端·后端·python·elasticsearch·golang
java1234_小锋13 小时前
Elasticsearch中的节点(比如共20个),其中的10个选了一个master,另外10个选了另一个master,怎么办?
大数据·elasticsearch·jenkins
Elastic 中国社区官方博客13 小时前
Elasticsearch 开放推理 API 增加了对 IBM watsonx.ai Slate 嵌入模型的支持
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
我的运维人生13 小时前
Elasticsearch实战应用:构建高效搜索与分析平台
大数据·elasticsearch·jenkins·运维开发·技术共享
Mephisto.java18 小时前
【大数据学习 | Spark】Spark的改变分区的算子
大数据·elasticsearch·oracle·spark·kafka·memcache
mqiqe18 小时前
Elasticsearch 分词器
python·elasticsearch