神经网络基础-神经网络补充概念-05-导数

概念

导数是微积分中的一个概念,用于描述函数在某一点的变化率。在数学中,函数的导数表示函数值随着自变量的微小变化而产生的变化量,即斜率或变化率。

假设有一个函数 f(x),其中 x 是自变量,y = f(x) 是因变量。函数 f(x) 在某一点 x0 处的导数表示为 f'(x0),也可以写作 dy/dx 或 df/dx。

导数的定义是:

f'(x0) = lim(h→0) [f(x0 + h) - f(x0)] / h

其中,h 表示自变量 x 的一个微小变化量。

导数的几个重要概念:

导数的几何意义:导数表示函数曲线在某一点的切线斜率。

导数的物理意义:在物理学中,导数可以表示物体的速度、加速度等概念。

导数的规则:导数具有一些运算规则,例如常数规则、幂规则、和差规则、乘积规则、商规则等,用于求不同类型函数的导数。

高阶导数:除了一阶导数,还可以计算二阶导数、三阶导数等,表示函数变化率的变化率。

链式法则:用于求复合函数的导数。

导数在数学、物理、工程等领域都有广泛的应用,例如在优化问题、函数的极值点、速度与加速度的关系等方面。

代码实现

方法一

python 复制代码
import sympy as sp

# 定义符号变量和函数
x = sp.symbols('x')
f = x**2 + 3*x + 2

# 计算函数的导数
f_prime = sp.diff(f, x)

print("函数的导数:", f_prime)

方法二

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# 定义函数
def f(x):
    return x**2 + 3*x + 2

# 定义计算导数的函数
def compute_derivative(f, x, h=1e-5):
    return (f(x + h) - f(x)) / h

x_vals = np.linspace(-10, 10, 100)
y_vals = f(x_vals)

# 计算导数值
derivative_vals = compute_derivative(f, x_vals)

# 绘制函数及其导数
plt.figure(figsize=(8, 6))
plt.plot(x_vals, y_vals, label='f(x) = x^2 + 3x + 2')
plt.plot(x_vals, derivative_vals, label="f'(x)")
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.title('Function and its Derivative')
plt.grid(True)
plt.show()
相关推荐
Antonio9156 分钟前
【图像处理】图片的前向映射与后向映射
图像处理·人工智能·计算机视觉
工藤学编程43 分钟前
零基础学AI大模型之RAG技术
人工智能
安替-AnTi1 小时前
PandaWiki:AI 驱动的开源知识库系
人工智能·embedding·检索增强·知识库·rag·查询优化
迦蓝叶1 小时前
JAiRouter v1.0.0 正式发布:企业级 AI 服务网关的开源解决方案
java·运维·人工智能·网关·spring·ai·开源
长空任鸟飞_阿康1 小时前
Node.js 核心模块详解:fs 模块原理与应用
前端·人工智能·ai·node.js
可触的未来,发芽的智生1 小时前
触摸未来2025-10-18:生成文字的小宇宙矩阵溯源
人工智能·python·神经网络·程序人生·自然语言处理
武子康1 小时前
AI-调查研究-106-具身智能 机器人学习数据采集工具和手段:传感器、API、遥操作、仿真与真人示教全流程
人工智能·深度学习·机器学习·ai·系统架构·机器人·具身智能
Python智慧行囊1 小时前
图像处理-opencv(一)
人工智能·opencv·计算机视觉
StarPrayers.2 小时前
损失函数(Loss Function)、反向传播(Backward Propagation)和优化器(Optimizer)学习笔记
人工智能·笔记·深度学习·学习
IT_陈寒2 小时前
Vite 5个隐藏技巧让你的项目构建速度提升50%,第3个太香了!
前端·人工智能·后端