从零实战SLAM-第八课(非特征点的视觉里程计)

在七月算法报的班,老师讲的蛮好。好记性不如烂笔头,关键内容还是记录一下吧,课程入口,感兴趣的同学可以学习一下。


特征点法流程:

1.在图像中提取特征点并计算特征描述 非常耗时约10ms ORB

2.在不同图像中寻找特征匹配 非常耗时𝑂(𝑛∧2) 暴力匹配

3.利用匹配点信息计算相机位姿 比较快速<1ms

是否可以不使用特征匹配计算VO?

光流法:最小化重投影误差 Reprojection error

直接法:最小化光度误差 Photometric error

光流: 追踪源图像某个点在其他图像中的运动。本质→估计像素在不同时刻图像中的运动。

光流法又分为两大类,每一类的计算方法也不同。

❑ 稀疏光流:计算部分像素运动 ---- Lucas Kanade

❑ 稠密光流:计算全部像素运动 ---- Horn Schunck

光流法的前提假说:灰度不变。

光流法的数学基础

光流法中的L-K方法

LK光流的结果依赖于图像梯度

❑ 但梯度不够平滑,可能剧烈变化

❑ 局部的梯度不能用于预测长期图像走向

解决方式:多层光流

光流法的总结:

➢ 可以看成最小化像素误差的非线性优化

➢ 每次使用了 Taylor 一阶近似,在离优化点较远时效果不佳,往往需要迭代多次

➢ 运动较大时要使用金字塔

➢ 可以用于跟踪图像中的稀疏关键点的运动轨迹

➢ 得到配对点后,后续计算与特征法VO中相同

光流法的缺点:

➢ 没有用到相机本身的几何结构

➢ 没有考虑到相机的旋转和图像的缩放

➢ 对于边界上的点,光流不好追踪

直接法:

通过相机模型对相机位姿变化进行估计

建立目标函数

计算过程

左扰动分解中三项的物理意义

根据使用的图像信息不同,可分为:

➢ 稀疏直接法:只处理稀疏角点或关键点

➢ 稠密直接法:使用所有像素

➢ 半稠密直接法:使用部分梯度明显的像素

直接法的直观解释:

➢ 像素灰度引导着优化的方向

➢ 要使优化成立,必须保证从初始估计到最优估计中间的梯度一直下降

➢ 这很容易受到图像非凸性的影响

直接法的优势与劣势

优势:

❑ 省略特征提取的时间

❑ 只需有像素梯度而不必是角点(对白墙等地方有较好效果)

❑ 可稠密或半稠密

劣势:

❑ 灰度不变难以满足(易受曝光和模糊影响)

❑ 单像素区分性差

❑ 图像非凸性

相关推荐
生命是有光的1 小时前
【机器学习】机器学习算法
人工智能·机器学习
Blossom.1181 小时前
把 AI 塞进「自行车码表」——基于 MEMS 的 3D 地形预测码表
人工智能·python·深度学习·opencv·机器学习·计算机视觉·3d
小鹿的工作手帐4 小时前
有鹿机器人:为城市描绘清洁新图景的智能使者
人工智能·科技·机器人
TechubNews5 小时前
香港数字资产交易市场蓬勃发展,监管与创新并驾齐驱
人工智能·区块链
DogDaoDao6 小时前
用PyTorch实现多类图像分类:从原理到实际操作
图像处理·人工智能·pytorch·python·深度学习·分类·图像分类
小和尚同志6 小时前
450 star 的神级提示词管理工具 AI-Gist,让提示词不再吃灰
人工智能·aigc
这张生成的图像能检测吗7 小时前
(论文速读)Prompt Depth Anything:让深度估计进入“提示时代“
深度学习·计算机视觉·深度估计
金井PRATHAMA7 小时前
大脑的藏宝图——神经科学如何为自然语言处理(NLP)的深度语义理解绘制新航线
人工智能·自然语言处理
大学生毕业题目8 小时前
毕业项目推荐:28-基于yolov8/yolov5/yolo11的电塔危险物品检测识别系统(Python+卷积神经网络)
人工智能·python·yolo·cnn·pyqt·电塔·危险物品
星期天要睡觉8 小时前
深度学习——卷积神经网络CNN(原理:基本结构流程、卷积层、池化层、全连接层等)
人工智能·深度学习·cnn