神经网络基础-神经网络补充概念-07-使用计算图求导

步骤

定义计算节点和操作:

"x" 是输入变量。

"Add" 表示加法操作。

"Sub" 表示减法操作。

"Multiply" 表示乘法操作。

计算函数值:

首先,我们将 x0 的值代入计算图中,计算出函数的值。

反向传播计算导数:

我们从输出节点开始,通过计算图的反向传播(Backpropagation)计算导数。

代码实现

python 复制代码
import tensorflow as tf

# 定义计算图
x = tf.Variable(0.0, name='x')
add_node = x + 2
sub_node = x - 3
multiply_node = add_node * sub_node

# 计算函数值
x_val = 1.0
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    result = sess.run(multiply_node, feed_dict={x: x_val})
    print("f(x) =", result)

# 反向传播计算导数
gradient = tf.gradients(multiply_node, x)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    gradient_value = sess.run(gradient, feed_dict={x: x_val})
    print("导数 =", gradient_value[0])
相关推荐
kalvin_y_liu9 分钟前
Lumi 具神智能机器人 SDK说明和ACT算法中的学习与推理
人工智能·ai·ros
阿里云大数据AI技术10 分钟前
云栖实录 | 阿里云助力金山办公打造智能搜索新标杆:WPS云文档搜索技术全面升级
人工智能·elasticsearch·搜索引擎
koo36429 分钟前
李宏毅机器学习笔记33
人工智能·笔记·机器学习
无风听海39 分钟前
神经网络之密集的词向量如何能够代表稀疏的词向量
人工智能·神经网络·机器学习
文火冰糖的硅基工坊43 分钟前
[人工智能-大模型-74]:模型层技术 - 模型训练六大步:③神经网络,预测输出:基本功能与对应的基本组成函数
人工智能·深度学习·神经网络
mwq3012344 分钟前
RLHF-奖励模型RM 的“引擎”:Pairwise Loss 梯度计算详解
人工智能
亚远景aspice1 小时前
亚远景热烈祝贺保隆科技通过ASPICE CL2评估
大数据·人工智能·物联网
苍何1 小时前
这款国产智能编码工具,竟然登顶全球TOP3!
人工智能
许泽宇的技术分享1 小时前
提示词工程完全指南:从入门到精通的AI对话艺术 —— 用一句话驯服千亿参数的“大脑“
人工智能
淡漠的蓝精灵1 小时前
深度解析Weights & Biases:让AI实验管理变得如此简单
人工智能·其他·机器学习