神经网络基础-神经网络补充概念-02-逻辑回归

概念

逻辑回归是一种用于二分分类问题的统计学习方法,尽管名字中带有"回归"一词,但实际上它用于分类任务。逻辑回归的目标是根据输入特征来预测数据点属于某个类别的概率,然后将概率映射到一个离散的类别标签。

逻辑回归模型的核心思想是将线性回归模型的输出通过一个逻辑函数(通常是Sigmoid函数)进行转换,将连续的预测值映射到0和1之间的概率值。这个概率可以被解释为数据点属于正类的概率。

公式说明

逻辑回归的数学表达式如下(假设有 n 个特征):

其中, P ( y = 1 ∣ x ) P(y=1|x) P(y=1∣x) 是给定输入特征 x x x 后数据点属于正类的概率, w 0 , w 1 , w 2 , ... , w n w_0, w_1, w_2, \ldots, w_n w0,w1,w2,...,wn 是模型的权重参数, x 1 , x 2 , ... , x n x_1, x_2, \ldots, x_n x1,x2,...,xn 是对应的特征值, e e e 是自然常数。

逻辑回归模型可以通过最大似然估计等方法来学习权重参数。一旦模型学习完成,可以使用预测函数来对新的数据点进行分类预测。

代码实现

python 复制代码
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 准备示例数据
X, y = ...  # 特征矩阵和标签

# 划分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建并训练逻辑回归模型
model = LogisticRegression()
model.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")
相关推荐
九章云极AladdinEdu20 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师21 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
cxr8281 天前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡1 天前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成1 天前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃1 天前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)1 天前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑
Godspeed Zhao1 天前
自动驾驶中的传感器技术46——Radar(7)
人工智能·机器学习·自动驾驶
limengshi1383921 天前
机器学习面试:请介绍几种常用的学习率衰减方式
人工智能·学习·机器学习
AKAMAI1 天前
Sport Network 凭借 Akamai 实现卓越成就
人工智能·云原生·云计算