神经网络基础-神经网络补充概念-02-逻辑回归

概念

逻辑回归是一种用于二分分类问题的统计学习方法,尽管名字中带有"回归"一词,但实际上它用于分类任务。逻辑回归的目标是根据输入特征来预测数据点属于某个类别的概率,然后将概率映射到一个离散的类别标签。

逻辑回归模型的核心思想是将线性回归模型的输出通过一个逻辑函数(通常是Sigmoid函数)进行转换,将连续的预测值映射到0和1之间的概率值。这个概率可以被解释为数据点属于正类的概率。

公式说明

逻辑回归的数学表达式如下(假设有 n 个特征):

其中, P ( y = 1 ∣ x ) P(y=1|x) P(y=1∣x) 是给定输入特征 x x x 后数据点属于正类的概率, w 0 , w 1 , w 2 , ... , w n w_0, w_1, w_2, \ldots, w_n w0,w1,w2,...,wn 是模型的权重参数, x 1 , x 2 , ... , x n x_1, x_2, \ldots, x_n x1,x2,...,xn 是对应的特征值, e e e 是自然常数。

逻辑回归模型可以通过最大似然估计等方法来学习权重参数。一旦模型学习完成,可以使用预测函数来对新的数据点进行分类预测。

代码实现

python 复制代码
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 准备示例数据
X, y = ...  # 特征矩阵和标签

# 划分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建并训练逻辑回归模型
model = LogisticRegression()
model.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")
相关推荐
August_._3 小时前
【MySQL】触发器、日志、锁机制 深度解析
java·大数据·数据库·人工智能·后端·mysql·青少年编程
磊磊落落3 小时前
使用 FastMCP 编写一个 MySQL MCP Server
人工智能
零号机3 小时前
使用TRAE 30分钟极速开发一款划词中英互译浏览器插件
前端·人工智能
FunTester3 小时前
基于 Cursor 的智能测试用例生成系统 - 项目介绍与实施指南
人工智能·ai·大模型·测试用例·实践指南·curor·智能测试用例
SEO_juper4 小时前
LLMs.txt 创建指南:为大型语言模型优化您的网站
人工智能·ai·语言模型·自然语言处理·数字营销
淮雵的Blog4 小时前
langGraph通俗易懂的解释、langGraph和使用API直接调用LLM的区别
人工智能
Mintopia4 小时前
🚀 共绩算力:3分钟拥有自己的文生图AI服务-容器化部署 StableDiffusion1.5-WebUI 应用
前端·人工智能·aigc
HPC_C4 小时前
SGLang: Efficient Execution of Structured Language Model Programs
人工智能·语言模型·自然语言处理
王哈哈^_^4 小时前
【完整源码+数据集】草莓数据集,yolov8草莓成熟度检测数据集 3207 张,草莓成熟度数据集,目标检测草莓识别算法系统实战教程
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
songyuc4 小时前
《A Bilateral CFAR Algorithm for Ship Detection in SAR Images》译读笔记
人工智能·笔记·计算机视觉