神经网络基础-神经网络补充概念-02-逻辑回归

概念

逻辑回归是一种用于二分分类问题的统计学习方法,尽管名字中带有"回归"一词,但实际上它用于分类任务。逻辑回归的目标是根据输入特征来预测数据点属于某个类别的概率,然后将概率映射到一个离散的类别标签。

逻辑回归模型的核心思想是将线性回归模型的输出通过一个逻辑函数(通常是Sigmoid函数)进行转换,将连续的预测值映射到0和1之间的概率值。这个概率可以被解释为数据点属于正类的概率。

公式说明

逻辑回归的数学表达式如下(假设有 n 个特征):

其中, P ( y = 1 ∣ x ) P(y=1|x) P(y=1∣x) 是给定输入特征 x x x 后数据点属于正类的概率, w 0 , w 1 , w 2 , ... , w n w_0, w_1, w_2, \ldots, w_n w0,w1,w2,...,wn 是模型的权重参数, x 1 , x 2 , ... , x n x_1, x_2, \ldots, x_n x1,x2,...,xn 是对应的特征值, e e e 是自然常数。

逻辑回归模型可以通过最大似然估计等方法来学习权重参数。一旦模型学习完成,可以使用预测函数来对新的数据点进行分类预测。

代码实现

python 复制代码
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 准备示例数据
X, y = ...  # 特征矩阵和标签

# 划分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建并训练逻辑回归模型
model = LogisticRegression()
model.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")
相关推荐
袋鼠云数栈几秒前
让多模态数据真正可用,AI 才能走出 Demo
大数据·人工智能·数据治理·多模态
esmap2 分钟前
技术深度解析:ESMap引擎VS主流数字孪生竞品
人工智能·物联网·3d·编辑器·智慧城市·webgl
鹧鸪云光伏2 分钟前
光伏清洗-AI算法助你找到积尘位置
人工智能·光伏
星河耀银海22 分钟前
AI学习第一站:从感知到认知,AI到底是什么?
人工智能·学习·ai
小鸡吃米…23 分钟前
机器学习 - 堆叠集成(Stacking)
人工智能·python·机器学习
Faker66363aaa28 分钟前
YOLO11改进蚊虫目标检测模型,AttheHead注意力机制提升检测精度
人工智能·目标检测·计算机视觉
郝学胜-神的一滴29 分钟前
基于30年教学沉淀的清华大学AI通识经典:《人工智能的底层逻辑》
人工智能·程序人生·机器学习·scikit-learn·sklearn
OPEN-Source29 分钟前
大模型实战:把 LangChain / LlamaIndex 工作流接入监控与告警体系
人工智能·langchain·企业微信·rag
得物技术32 分钟前
大模型网关:大模型时代的智能交通枢纽|得物技术
人工智能·ai
共享家952733 分钟前
嵌入模型(Embedding)的全方位指南
人工智能·机器学习