神经网络基础-神经网络补充概念-40-神经网络权重的初始化

概念

神经网络权重的初始化是深度学习中的重要步骤,良好的权重初始化可以加速模型的训练收敛,提高模型的性能和稳定性。以下是一些常用的权重初始化方法:

零初始化(Zero Initialization):将权重初始化为零。然而,这种方法不太适合深层神经网络,因为它会导致所有神经元在同一时间具有相同的输出,从而破坏了网络的对称性。因此,在实践中很少使用纯粹的零初始化。

随机初始化(Random Initialization):将权重初始化为随机值。常见的随机初始化方法包括:

均匀分布(Uniform Distribution):在某个范围内随机采样权重值,如 [ − a , a ] [-a, a] [−a,a]。

正态分布(Normal Distribution):从均值为 0、标准差为 σ \sigma σ 的正态分布中随机采样权重值。

随机初始化的目的是打破权重的对称性,使不同神经元可以学到不同的特征。

Xavier 初始化(Glorot Initialization):Xavier 初始化是一种常用的权重初始化方法,特别适用于 sigmoid 和 tanh 等激活函数。对于具有 n n n 个输入和 m m m 个输出的全连接层,Xavier 初始化从均匀分布 U [ − 6 n + m , 6 n + m ] U[-\sqrt{\frac{6}{n+m}}, \sqrt{\frac{6}{n+m}}] U[−n+m6 ,n+m6 ] 中采样权重值。

He 初始化:He 初始化是适用于 ReLU 激活函数的权重初始化方法。对于具有 n n n 个输入的全连接层,He 初始化从正态分布 N ( 0 , 2 n ) N(0, \sqrt{\frac{2}{n}}) N(0,n2 ) 中采样权重值。

LeCun 初始化:LeCun 初始化是适用于 tanh 激活函数的权重初始化方法。对于具有 n n n 个输入的全连接层,LeCun 初始化从均匀分布 U [ − 1 n , 1 n ] U[-\sqrt{\frac{1}{n}}, \sqrt{\frac{1}{n}}] U[−n1 ,n1 ] 中采样权重值。

Orthogonal 初始化:Orthogonal 初始化是将权重矩阵初始化为正交矩阵,有助于防止梯度消失和梯度爆炸。这种方法特别适用于循环神经网络(RNN)等架构。

代码实现

python 复制代码
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

# 生成示例数据
X = np.random.rand(100, 10)

# 定义模型
def build_model(initializer):
    model = keras.Sequential([
        layers.Input(shape=(X.shape[1],)),
        layers.Dense(64, activation='relu', kernel_initializer=initializer),
        layers.Dense(32, activation='relu', kernel_initializer=initializer),
        layers.Dense(1, activation='sigmoid', kernel_initializer=initializer)
    ])
    return model

# 随机初始化(均匀分布)
random_initializer = tf.keras.initializers.RandomUniform(minval=-0.05, maxval=0.05)
model_random = build_model(random_initializer)
model_random.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# Xavier 初始化
xavier_initializer = tf.keras.initializers.GlorotUniform()
model_xavier = build_model(xavier_initializer)
model_xavier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# He 初始化
he_initializer = tf.keras.initializers.he_normal()
model_he = build_model(he_initializer)
model_he.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# LeCun 初始化
lecun_initializer = tf.keras.initializers.lecun_uniform()
model_lecun = build_model(lecun_initializer)
model_lecun.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# Orthogonal 初始化
orthogonal_initializer = tf.keras.initializers.orthogonal()
model_orthogonal = build_model(orthogonal_initializer)
model_orthogonal.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# 打印各种初始化方法的模型结构
print("Random Initialization:")
model_random.summary()

print("\nXavier Initialization:")
model_xavier.summary()

print("\nHe Initialization:")
model_he.summary()

print("\nLeCun Initialization:")
model_lecun.summary()

print("\nOrthogonal Initialization:")
model_orthogonal.summary()
相关推荐
之歆4 分钟前
Spring AI入门到实战到原理源码-多模型协作智能客服系统
java·人工智能·spring
盛世宏博北京5 分钟前
《可复制推广:智慧档案馆 “十防” 安全防护体系建设指南》
网络·人工智能·web安全·智慧档案
沫儿笙11 分钟前
CLOOS克鲁斯焊接机器人混合气节气装置
人工智能·机器人
一只落魄的蜂鸟13 分钟前
【2026年-01期】AI Agent Trends of 2025
人工智能
Deepoch13 分钟前
从“机械臂”到“农艺手”:Deepoc如何让机器人理解果实的生命语言
人工智能·机器人·采摘机器人·农业机器人·具身模型·deepoc
BEOL贝尔科技15 分钟前
生物冰箱智能锁如何帮助实验室做好生物样本保存工作的权限管理呢?
人工智能·数据分析
dundunmm18 分钟前
【每天一个知识点】模式识别与群体智慧:AI 如何从“看见数据”走向“理解世界”
人工智能·群体智能·模式识别
hkNaruto20 分钟前
【AI】AI学习笔记:关于嵌入模型的切片大小,实际的业务系统中如何选择
人工智能·笔记·学习
华奥系科技21 分钟前
老旧社区适老化智能改造,两个系统成社区标配项目
大数据·人工智能
凤希AI伴侣24 分钟前
从文件到数据库:凤希AI伴侣的存储升级之路-凤希AI伴侣-2026年1月9日
人工智能·凤希ai伴侣