kafka集成篇

kafka的Java客户端

生产者

1.引入依赖

xml 复制代码
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>2.6.3</version>
        </dependency>

2.生产者发送消息的基本实现

java 复制代码
/**
 * 消息的发送⽅
 */
public class MyProducer {
    private final static String TOPIC_NAME = "my-replicated-topic";

    public static void main(String[] args) {
        Properties props = new Properties();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,
                "124.222.253.33:9092,124.222.253.33:9093,124.222.253.33:9094");

        // 把发送的key从字符串序列化为字节数组
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
                StringSerializer.class.getName());
        // 把发送消息value从字符串序列化为字节数组
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
                StringSerializer.class.getName());
        RecordMetadata metadata = null;
        try (Producer<String, String> producer = new KafkaProducer<>(props)) {
            Order order = new Order(1L, 99.9D);

            // 未指定发送分区,具体发送的分区计算公式:hash(key)%partitionNum
            ProducerRecord<String, String> producerRecord = new
                    ProducerRecord<>(TOPIC_NAME
                    , order.getOrderId().toString(), JSON.toJSONString(order));

            // 等待消息发送成功的同步阻塞⽅法
            metadata = producer.send(producerRecord).get();
        } catch (InterruptedException | ExecutionException e) {
            throw new RuntimeException(e);
        } finally {
            if (metadata != null) {
                // =====阻塞=======
                System.out.println("同步⽅式发送消息结果:" + "topic-" +
                        metadata.topic() + "|partition-"
                        + metadata.partition() + "|offset-" +
                        metadata.offset());
            }
        }
    }
}

3.发送消息到指定分区

4.发送消息未指定分区

发送消息未指定分区,会通过业务key的hash运算,算出消息往哪个分区上发

java 复制代码
// 未指定发送分区,具体发送的分区计算公式:hash(key)%partitionNum
ProducerRecord<String, String> producerRecord = new
    ProducerRecord<>(TOPIC_NAME
                     , order.getOrderId().toString(), JSON.toJSONString(order));

5.同步发送消息

如果生产者发送消息没有收到ack,生产者会阻塞,阻塞到3s的时间,如果还没有收到消息,会进行重试。重试的次数3次。

java 复制代码
    RecordMetadata metadata = producer.send(producerRecord).get();
     System.out.println("同步⽅式发送消息结果:" + "topic-" +
    metadata.topic() + "|partition-"
     + metadata.partition() + "|offset-" + metadata.offset());

6.异步发送消息

异步发送,生产者发送完消息后就可以执行之后的业务,broker在收到消息后异步调用生产者提供的callback回调方法。

java 复制代码
            // 异步发送消息 Callback回调接口
            producer.send(producerRecord, new Callback() {
                // 异步回调方法
                @Override
                public void onCompletion(RecordMetadata metadata, Exception e) {
                    if (e != null) {
                        System.err.println("发送消息失败:" +
                                e.getMessage());
                    }
                    if (metadata != null) {
                        System.out.println("异步⽅式发送消息结果:" + "topic-" +
                                metadata.topic() + "|partition-"
                                + metadata.partition() + "|offset-" + metadata.offset());
                    }
                }
            });
			System.out.println("处理之后的逻辑~");

输出结果:

7.生产者中的ack的配置

在同步发消息的场景下:生产者发送消息到broker上后,ack会有3种不同的选择

  • ack = 0 :kafka-cluster不需要任何的broker收到消息,就立即返回ack给生产者就可以继续发送下一条消息,效率是最高的但最容易丢消息
  • ack=1(默认):多副本之间的leader已经收到消息,并把消息写⼊到本地的log中,才会返回ack给生产者,性能和安全性是最均衡的(这种情况下,如果follower没有成功备份数据,而此时leader又挂掉,则消息会丢失)
  • ack=-1/all:需要等待 min.insync.replicas(默认为1,推荐配置大于等于2) 这个参数配置的副本个数都成功写入日志才会返回ack给生产者,这种策略会保证只要有⼀个备份存活就不会丢失数据。这种方式最安全但性能最差。(⼀般除非是金融级别,或跟钱打交道的场景才会使用这种配置)

code:

java 复制代码
props.put(ProducerConfig.ACKS_CONFIG, "1");

关于ack和重试(如果没有收到ack,就开启重试)的配置

  • 发送会默认会重试3次,每次间隔100ms
java 复制代码
props.put(ProducerConfig.ACKS_CONFIG, "1");
 /*
 发送失败会重试,默认重试间隔100ms,【重试能保证消息发送的可靠性,但是也可能造成消息重复发送】,⽐如⽹络抖动,所以【需要在接收者那边做好消息接收的幂等性处理】
 */
 props.put(ProducerConfig.RETRIES_CONFIG, 3);
 // 重试间隔设置
 props.put(ProducerConfig.RETRY_BACKOFF_MS_CONFIG, 300);

8.关于消息发送的缓冲区

发送的消息会先进入到本地缓冲区(32mb),kakfa会跑⼀个线程,该线程去缓冲区中取16k的数据,发送到kafka,如果到10毫秒数据没取满16k,也会发送⼀次。

  • kafka默认会创建一个消息缓冲区,用来存放要发送的消息,缓冲区是32m
java 复制代码
props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
  • kafka本地线程会去缓冲区中⼀次拉16k的数据,发送到broker
java 复制代码
props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
  • 如果线程拉不到16k的数据,间隔10ms也会将已拉到的数据发到broker
java 复制代码
props.put(ProducerConfig.LINGER_MS_CONFIG, 10);

消费者

1.消费者消费消息的基本实现

java 复制代码
public class MyConsumer {
    private final static String TOPIC_NAME = "my-replicated-topic";
    private final static String CONSUMER_GROUP_NAME = "testGroup";

    public static void main(String[] args) {
        Properties props = new Properties();
        props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,
                "124.222.253.33:9092,124.222.253.33:9093,124.222.253.33:9094");
        // 消费分组名
        props.put(ConsumerConfig.GROUP_ID_CONFIG, CONSUMER_GROUP_NAME);
        props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
                StringDeserializer.class.getName());
        props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
                StringDeserializer.class.getName());
        // 1.创建⼀个消费者的客户端
        try (KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props)) {
            // 2.消费者订阅主题列表
            consumer.subscribe(Collections.singletonList(TOPIC_NAME));

            while (true) {
                /*
                 * 3.poll()API 是拉取消息的⻓轮询
                 */
                ConsumerRecords<String, String> records =
                        consumer.poll(Duration.ofMillis(1000));
                for (ConsumerRecord<String, String> record : records) {
                    // 4.操作消息
                    System.out.printf("收到消息:partition = %d,offset = %d, key = %s, value = %s%n ", record.partition(), record.offset(), record.key(), record.value());
                }
            }
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }
}

2.消费者自动提交和手动提交offset

1)提交的内容

消费者无论是自动提交还是手动提交,都需要把所属的消费组+消费的某个主题+消费的某个分区及消费的偏移量,这样的信息提交到集群的_consumer_offsets主题里面。

2)自动提交

消费者poll消息下来以后就会自动提交offset

java 复制代码
// 是否自动提交offset,默认就是true
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
// 自动提交offset的间隔时间
props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");

注意自动提交会丢消息。因为消费者在消费前提交offset,有可能提交完后还没消费时消费者挂了。于是下⼀个消费者会从已提交的offset的下一个位置开始消费消息。之前未被消费的消息就丢失掉了。

3)手动提交

需要把自动提交的配置改成false

java 复制代码
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");

手动提交又分成了两种

  • 手动同步提交

在消费完消息后调用同步提交的方法,当集群返回ack前⼀直阻塞,返回ack后表示提交成功,执行之后的逻辑

java 复制代码
            while (true) {
                /*
                 * poll()API 是拉取消息的⻓轮询
                 */
                ConsumerRecords<String, String> records =
                        consumer.poll(Duration.ofMillis(1000));
                for (ConsumerRecord<String, String> record : records) {
                    // 操作消息
                    System.out.printf("收到消息:partition = %d,offset = %d, key = %s, value = %s%n ", record.partition(), record.offset(), record.key(), record.value());
                }

                // 所有的消息已消费完
                if (records.count() > 0) {// 有消息
                    // ⼿动同步提交offset,当前线程会阻塞直到offset提交成功
                    // 【⼀般使⽤同步提交】,因为提交之后⼀般也没有什么逻辑代码了
                    consumer.commitSync();// =======阻塞=== 提交成功
                }
            }
  • 手动异步提交

在消息消费完后提交,不需要等到集群ack,直接执行之后的逻辑,可以设置⼀个回调方法,供集群调用

java 复制代码
            while (true) {
                /*
                 * poll()API 是拉取消息的⻓轮询
                 */
                ConsumerRecords<String, String> records =
                        consumer.poll(Duration.ofMillis(1000));
                for (ConsumerRecord<String, String> record : records) {
                    // 操作消息
                    System.out.printf("收到消息:partition = %d,offset = %d, key = %s, value = %s%n ", record.partition(), record.offset(), record.key(), record.value());
                }

                // 所有的消息已消费完
                if (records.count() > 0) {// 有消息
                    // ⼿动异步提交offset,当前线程提交offset不会阻塞,可以继续处理后⾯的程序逻辑
                    consumer.commitAsync(new OffsetCommitCallback() {
                        @Override
                        public void onComplete(Map<TopicPartition,
                                OffsetAndMetadata> offsets, Exception exception) {
                            if (exception != null) {
                                System.err.println("Commit failed for " + offsets);
                                System.err.println("Commit failed exception: " + exception.getMessage());
                            }
                        }
                    });
                }
            }

3.长轮询poll消息(消费者拉取消息)

  • 消费者建立了与broker之间的长连接,开始poll消息

  • 默认情况下,消费者一次会poll500条消息

java 复制代码
// ⼀次poll最⼤拉取消息的条数,可以根据消费速度的快慢来设置
props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 500);
  • 代码中设置了长轮询的时间是1000毫秒
java 复制代码
            while (true) {
                /*
                 * poll()API 是拉取消息的⻓轮询
                 */
                ConsumerRecords<String, String> records =
                        consumer.poll(Duration.ofMillis(1000));
                for (ConsumerRecord<String, String> record : records) {
                    System.out.printf("收到消息:partition = %d,offset = %d, key = %s, value = %s%n ", record.partition(), record.offset(), record.key(), record.value());
                }
            }
  • 意味着:
    • 如果⼀次poll到500条,就直接执行for循环
    • 如果这⼀次没有poll到500条。且时间在1秒内,那么长轮询继续poll,要么到500条,要么到1s,执行后续for循环
    • 如果多次poll都没达到500条,且1秒时间到了,那么直接执行for循环
    • 如果两次poll的间隔超过30s(poll时间短但是消费时间长,消费者消费可能会达到30s左右),集群会认为该消费者的消费能力过 弱,该消费者被踢出消费组,触发rebalance机制,rebalance机制会造成性能开销

可以通过设置参数, 让⼀次poll的消息条数少⼀点,避免触发rebalance损耗性能

java 复制代码
 // ⼀次poll最⼤拉取消息的条数,可以根据消费速度的快慢来设置
 props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 500);
 // 如果两次poll的时间如果超出了30s的时间间隔,kafka会认为其消费能⼒过弱,将其踢出消费组。将分区分配给其他消费者。-rebalance
 props.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, 30 * 1000);

4.消费者的健康状态检查

消费者每隔1s向kafka集群发送心跳,集群发现如果有超过10s没有续约的消费者,将被踢出消费组,触发该消费组的rebalance机制,将该分区交给消费组里的其他消费者进行消费。

java 复制代码
// consumer给broker发送心跳的间隔时间  1s一次
props.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG, 1000);
// kafka如果超过10秒没有收到消费者的心跳,则会把消费者踢出消费组,进⾏rebalance,把分区分配给其他消费者。
props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 10 * 1000);

5.指定分区和偏移量、时间消费

  • 指定分区消费
java 复制代码
consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
  • 从头消费
java 复制代码
consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
consumer.seekToBeginning(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
  • 指定offset消费
java 复制代码
consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
consumer.seek(new TopicPartition(TOPIC_NAME, 0), 10);
  • 指定时间消费

根据时间,去所有的partition中确定该时间对应的offset,然后去所有的partition中找到该offset之后的消息开始消费。

java 复制代码
// topic对应所有分区
List<PartitionInfo> topicPartitions = consumer.partitionsFor(TOPIC_NAME);
// 从1小时前开始消费
long fetchDataTime = new Date().getTime() - 1000 * 60 * 60;
Map<TopicPartition, Long> map = new HashMap<>();
for (PartitionInfo par : topicPartitions) {
    map.put(new TopicPartition(TOPIC_NAME, par.partition()), fetchDataTime);
}
Map<TopicPartition, OffsetAndTimestamp> parMap = consumer.offsetsForTimes(map);
for (Map.Entry<TopicPartition, OffsetAndTimestamp> entry : parMap.entrySet()) {
    TopicPartition key = entry.getKey();
    OffsetAndTimestamp value = entry.getValue();
    if (key == null || value == null) continue;
    long offset = value.offset();
    System.out.println("partition-" + key.partition() +
                       "|offset-" + offset);
    System.out.println();
    //根据消费⾥的timestamp确定offset
    consumer.assign(Arrays.asList(key));
    consumer.seek(key, offset);
}

6.新消费组的消费offset规则

新消费组中的消费者在启动以后,默认会从当前分区的最后⼀条消息的offset+1开始消费(消费新消息)。可以通过以下的设置,让新的消费者第⼀次从头开始消费。之后开始消费新消息(最后消费的位置的偏移量+1)

  • Latest:默认的,消费新消息

  • earliest:第⼀次从头开始消费。之后开始消费新消息(最后消费的位置的偏移量+1),这个需要区别于consumer.seekToBeginning(每次都从头开始消费)

java 复制代码
props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");

SpringBoot集成kafka

1.引入依赖

xml 复制代码
        <dependency>
            <groupId>org.springframework.kafka</groupId>
            <artifactId>spring-kafka</artifactId>
        </dependency>

2.配置文件

yaml 复制代码
server:
  port: 8080
spring:
  kafka:
    bootstrap-servers: 124.222.253.33:9092,124.222.253.33:9093,124.222.253.33:9094
    producer: # 生产者
      retries: 3 # 设置大于0的值,则客户端会将发送失败的记录重新发送
      batch-size: 16384 # 每次拉取多少数据发送broker 
      buffer-memory: 33554432 # 本地缓冲区大小
      acks: 1
      # 指定消息key和消息体的编解码⽅式
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.apache.kafka.common.serialization.StringSerializer
    consumer:
      group-id: default-group
      enable-auto-commit: false
      auto-offset-reset: earliest
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      max-poll-records: 500
    listener:
      # 当每⼀条记录被消费者监听器(ListenerConsumer)处理之后提交
      # RECORD
      # 当每⼀批poll()的数据被消费者监听器(ListenerConsumer)处理之后提交
      # BATCH
      # 当每⼀批poll()的数据被消费者监听器(ListenerConsumer)处理之后,距离上次提交时间大于TIME时提交
      # TIME
      # 当每⼀批poll()的数据被消费者监听器(ListenerConsumer)处理之后,被处理record数量大于等于COUNT时提交
      # COUNT
      # TIME | COUNT 有⼀个条件满足时提交
      # COUNT_TIME
      # 当每⼀批poll()的数据被消费者监听器(ListenerConsumer)处理之后, 手动调用Acknowledgment.acknowledge()后提交
      # MANUAL
      # 【手动调用Acknowledgment.acknowledge()后立即提交,⼀般使用这种】
      # MANUAL_IMMEDIATE
      ack-mode: MANUAL_IMMEDIATE

3.消息生产者

发送消息到指定topic

4.消息消费者

设置消费组,消费指定topic

java 复制代码
@Component
public class MyConsumer {
    @KafkaListener(topics = "my-replicated-topic", groupId = "MyGroup1")
    public void listenGroup(ConsumerRecord<String, String> record,
                            Acknowledgment ack) {
        String value = record.value();
        System.out.println(record);
        System.out.println(value);
        //⼿动提交offset
        ack.acknowledge();
    }
}

5.消费者中配置消费主题、分区和偏移量

设置消费组、多topic、指定分区、指定偏移量消费及设置消费者个数

java 复制代码
    @KafkaListener(groupId = "testGroup", topicPartitions = {
            @TopicPartition(topic = "topic1", partitions = {"0", "1"}),
            @TopicPartition(topic = "topic2", partitions = "0",
                    partitionOffsets = @PartitionOffset(partition = "1", initialOffset = "100"))
    }, concurrency = "3")// concurrency:同消费组中消费者个数,就是并发消费数,建议小于等于分区总数
    public void listenGroupPro(ConsumerRecord<String, String> record,
                               Acknowledgment ack) {
        String value = record.value();
        System.out.println(value);
        System.out.println(record);
        //⼿动提交offset
        ack.acknowledge();
    }
相关推荐
codeBrute3 小时前
RabbitMQ与Kafka的比较及应用
分布式·kafka·rabbitmq
等一场春雨6 小时前
Springboot Redisson 分布式锁、缓存、消息队列、布隆过滤器
java·spring boot·分布式
m0_748235959 小时前
Spring Boot 集成 Kafka
spring boot·kafka·linq
fajianchen9 小时前
基于本地消息表实现分布式事务
分布式·分布式事务
后季暖9 小时前
去哪儿kafka优化案例
分布式·kafka
笑小枫10 小时前
SpringBoot 基于 Redisson 分布式锁实现
spring boot·redis·分布式·后端
huapiaoy11 小时前
RabbitMQ---TTL与死信
分布式·rabbitmq
m0_7482331712 小时前
RabbitMQ 客户端 连接、发送、接收处理消息
分布式·rabbitmq·ruby
Cikiss12 小时前
图解Git——分布式Git《Pro Git》
分布式·git·后端·源代码管理
码出人生_102413 小时前
Spring boot 集成分布式定时任务
spring boot·分布式·后端