神经网络基础-神经网络补充概念-14-逻辑回归中损失函数的解释

概念

逻辑回归损失函数是用来衡量逻辑回归模型预测与实际观测之间差异的函数。它的目标是找到一组模型参数,使得预测结果尽可能接近实际观测。

理解

在逻辑回归中,常用的损失函数是对数似然损失(Log-Likelihood Loss),也称为交叉熵损失(Cross-Entropy Loss)。它在分类问题中非常常见,特别适用于二分类问题。

公式

假设我们有一组训练样本 ( x ( 1 ) , y ( 1 ) ) , ( x ( 2 ) , y ( 2 ) ) , ... , ( x ( m ) , y ( m ) ) (x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(m)}, y^{(m)}) (x(1),y(1)),(x(2),y(2)),...,(x(m),y(m)),其中 x ( i ) x^{(i)} x(i) 是输入特征, y ( i ) y^{(i)} y(i) 是对应的实际标签(0 或 1)。模型的预测结果为 y ^ ( i ) \hat{y}^{(i)} y^(i),它是由逻辑回归函数转换得到的: y ^ ( i ) = h θ ( x ( i ) ) = 1 1 + e − θ T x ( i ) \hat{y}^{(i)} = h_\theta(x^{(i)}) = \frac{1}{1 + e^{-\theta^T x^{(i)}}} y^(i)=hθ(x(i))=1+e−θTx(i)1。

对于每个样本,我们可以定义一个对数似然函数:

其中 m m m 是样本数量。

这个损失函数的意义是,当模型的预测结果与实际标签一致时,对数似然损失趋近于0。当模型的预测与实际不一致时,损失会逐渐增加。因此,优化模型的参数就是通过最小化这个损失函数,使得模型的预测结果尽可能接近实际标签。

逻辑回归损失函数的优化通常使用梯度下降等优化算法。通过迭代更新模型参数,最终使得损失函数达到最小值,从而得到能够对数据进行合理分类的逻辑回归模型。

代码实现

python 复制代码
import numpy as np
from sklearn.model_selection import train_test_split

# 生成模拟数据
np.random.seed(42)
m = 100
n = 2
X = np.random.randn(m, n)
X = np.hstack((np.ones((m, 1)), X))
theta_true = np.array([1, 2, 3])
y = (X.dot(theta_true) + np.random.randn(m) * 0.2) > 0

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 初始化模型参数
theta = np.zeros(X_train.shape[1])

# 定义sigmoid函数
def sigmoid(z):
    return 1 / (1 + np.exp(-z))

# 定义损失函数
def compute_loss(X, y, theta):
    m = len(y)
    h = sigmoid(X.dot(theta))
    loss = (-1/m) * np.sum(y * np.log(h) + (1 - y) * np.log(1 - h))
    return loss

# 定义梯度计算函数
def compute_gradient(X, y, theta):
    m = len(y)
    h = sigmoid(X.dot(theta))
    gradient = X.T.dot(h - y) / m
    return gradient

# 执行梯度下降
learning_rate = 0.01
num_iterations = 1000

for _ in range(num_iterations):
    gradient = compute_gradient(X_train, y_train, theta)
    theta -= learning_rate * gradient

# 在测试集上计算损失
test_loss = compute_loss(X_test, y_test, theta)
print("测试集上的损失:", test_loss)
相关推荐
子燕若水1 小时前
Unreal Engine 5中的AI知识
人工智能
极限实验室2 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能
杨过过儿2 小时前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫2 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
伍哥的传说2 小时前
React 各颜色转换方法、颜色值换算工具HEX、RGB/RGBA、HSL/HSLA、HSV、CMYK
深度学习·神经网络·react.js
大千AI助手2 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
AI生存日记2 小时前
百度文心大模型 4.5 系列全面开源 英特尔同步支持端侧部署
人工智能·百度·开源·open ai大模型
LCG元3 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
why技术3 小时前
Stack Overflow,轰然倒下!
前端·人工智能·后端