神经网络基础-神经网络补充概念-14-逻辑回归中损失函数的解释

概念

逻辑回归损失函数是用来衡量逻辑回归模型预测与实际观测之间差异的函数。它的目标是找到一组模型参数,使得预测结果尽可能接近实际观测。

理解

在逻辑回归中,常用的损失函数是对数似然损失(Log-Likelihood Loss),也称为交叉熵损失(Cross-Entropy Loss)。它在分类问题中非常常见,特别适用于二分类问题。

公式

假设我们有一组训练样本 ( x ( 1 ) , y ( 1 ) ) , ( x ( 2 ) , y ( 2 ) ) , ... , ( x ( m ) , y ( m ) ) (x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(m)}, y^{(m)}) (x(1),y(1)),(x(2),y(2)),...,(x(m),y(m)),其中 x ( i ) x^{(i)} x(i) 是输入特征, y ( i ) y^{(i)} y(i) 是对应的实际标签(0 或 1)。模型的预测结果为 y ^ ( i ) \hat{y}^{(i)} y^(i),它是由逻辑回归函数转换得到的: y ^ ( i ) = h θ ( x ( i ) ) = 1 1 + e − θ T x ( i ) \hat{y}^{(i)} = h_\theta(x^{(i)}) = \frac{1}{1 + e^{-\theta^T x^{(i)}}} y^(i)=hθ(x(i))=1+e−θTx(i)1。

对于每个样本,我们可以定义一个对数似然函数:

其中 m m m 是样本数量。

这个损失函数的意义是,当模型的预测结果与实际标签一致时,对数似然损失趋近于0。当模型的预测与实际不一致时,损失会逐渐增加。因此,优化模型的参数就是通过最小化这个损失函数,使得模型的预测结果尽可能接近实际标签。

逻辑回归损失函数的优化通常使用梯度下降等优化算法。通过迭代更新模型参数,最终使得损失函数达到最小值,从而得到能够对数据进行合理分类的逻辑回归模型。

代码实现

python 复制代码
import numpy as np
from sklearn.model_selection import train_test_split

# 生成模拟数据
np.random.seed(42)
m = 100
n = 2
X = np.random.randn(m, n)
X = np.hstack((np.ones((m, 1)), X))
theta_true = np.array([1, 2, 3])
y = (X.dot(theta_true) + np.random.randn(m) * 0.2) > 0

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 初始化模型参数
theta = np.zeros(X_train.shape[1])

# 定义sigmoid函数
def sigmoid(z):
    return 1 / (1 + np.exp(-z))

# 定义损失函数
def compute_loss(X, y, theta):
    m = len(y)
    h = sigmoid(X.dot(theta))
    loss = (-1/m) * np.sum(y * np.log(h) + (1 - y) * np.log(1 - h))
    return loss

# 定义梯度计算函数
def compute_gradient(X, y, theta):
    m = len(y)
    h = sigmoid(X.dot(theta))
    gradient = X.T.dot(h - y) / m
    return gradient

# 执行梯度下降
learning_rate = 0.01
num_iterations = 1000

for _ in range(num_iterations):
    gradient = compute_gradient(X_train, y_train, theta)
    theta -= learning_rate * gradient

# 在测试集上计算损失
test_loss = compute_loss(X_test, y_test, theta)
print("测试集上的损失:", test_loss)
相关推荐
XianxinMao2 分钟前
2024大模型双向突破:MoE架构创新与小模型崛起
人工智能·架构
Francek Chen13 分钟前
【深度学习基础】多层感知机 | 模型选择、欠拟合和过拟合
人工智能·pytorch·深度学习·神经网络·多层感知机·过拟合
pchmi1 小时前
C# OpenCV机器视觉:红外体温检测
人工智能·数码相机·opencv·计算机视觉·c#·机器视觉·opencvsharp
认知作战壳吉桔1 小时前
中国认知作战研究中心:从认知战角度分析2007年iPhone发布
大数据·人工智能·新质生产力·认知战·认知战研究中心
软件公司.乐学1 小时前
安全生产算法一体机定制
人工智能·安全
kcarly2 小时前
知识图谱都有哪些常见算法
人工智能·算法·知识图谱
dddcyy2 小时前
利用现有模型处理面部视频获取特征向量(3)
人工智能·深度学习
Fxrain2 小时前
[Computer Vision]实验三:图像拼接
人工智能·计算机视觉
2301_780356702 小时前
为医院量身定制做“旧改”| 全视通物联网智慧病房
大数据·人工智能·科技·健康医疗
云起无垠2 小时前
【论文速读】| 评估并提高大语言模型生成的安全攻击探测器的鲁棒性
人工智能·安全·语言模型