从零构建深度学习推理框架-8 卷积算子实现

其实这一次课还蛮好理解的:

首先将kernel展平:

cpp 复制代码
    for (uint32_t g = 0; g < groups; ++g) {
      std::vector<arma::fmat> kernel_matrix_arr(kernel_count_group);
      arma::fmat kernel_matrix_c(1, row_len * input_c_group);

      for (uint32_t k = 0; k < kernel_count_group; ++k) {
        const std::shared_ptr<Tensor<float>> &kernel =
            weights.at(k + g * kernel_count_group);
        for (uint32_t ic = 0; ic < input_c_group; ++ic) {
          memcpy(kernel_matrix_c.memptr() + row_len * ic,
                 kernel->at(ic).memptr(), row_len * sizeof(float));
        }
        LOG(INFO) << "kernel展开后: " << "\n" << kernel_matrix_c;
        kernel_matrix_arr.at(k) = kernel_matrix_c;
      }

将原来的kernel放到kernel_matrix_c里面,之后如果是多个channel,也就是input_c有多个,那就按照rowlen*ic依次存放到里面。

将输入input展平:

cpp 复制代码
//按照上面的图就是input = 3*9 ,4的这样一个空间
      arma::fmat input_matrix(input_c_group * row_len, col_len);
      for (uint32_t ic = 0; ic < input_c_group; ++ic) {
        const arma::fmat &input_channel = input_->at(ic + g * input_c_group);
        int current_col = 0;
//下面是以窗口滑动的顺序选取
        for (uint32_t w = 0; w < input_w - kernel_w + 1; w += stride_w) {
          for (uint32_t r = 0; r < input_h - kernel_h + 1; r += stride_h) {
            float *input_matrix_c_ptr =
                input_matrix.colptr(current_col) + ic * row_len;//对准窗口位置,比如对第一个就是对准红色, 黄色, 绿色
            current_col += 1;

            for (uint32_t kw = 0; kw < kernel_w; ++kw) {
              const float *region_ptr = input_channel.colptr(w + kw) + r;
              memcpy(input_matrix_c_ptr, region_ptr, kernel_h * sizeof(float));
              input_matrix_c_ptr += kernel_h;
            }
          }
        }
      }
      LOG(INFO)  << "input展开后: " << "\n"  << input_matrix;

对于:

cpp 复制代码
 for (uint32_t kw = 0; kw < kernel_w; ++kw) {
              const float *region_ptr = input_channel.colptr(w + kw) + r;
              memcpy(input_matrix_c_ptr, region_ptr, kernel_h * sizeof(float));
              input_matrix_c_ptr += kernel_h;
            }

w+kw指向的是窗口的列,r指向的是窗口的行

然后对于每个窗口的以kernel的列为标准复制过去。

最后两个矩阵相乘就可以得到结果

相关推荐
带娃的IT创业者2 分钟前
《AI大模型应知应会100篇》第65篇:基于大模型的文档问答系统实现
人工智能
TGITCIC14 分钟前
智脑进化:神经网络如何从单层感知机迈向深度学习新纪元
人工智能·深度学习·神经网络
妄想成为master28 分钟前
计算机视觉----常见卷积汇总
人工智能·计算机视觉
jndingxin35 分钟前
OpenCV CUDA 模块中用于在 GPU 上计算矩阵中每个元素的绝对值或复数的模函数abs()
人工智能·opencv
Code哈哈笑1 小时前
【机器学习】支持向量回归(SVR)从入门到实战:原理、实现与优化指南
人工智能·算法·机器学习·回归·svm
拓端研究室TRL1 小时前
Python与MySQL网站排名数据分析及多层感知机MLP、机器学习优化策略和地理可视化应用|附AI智能体数据代码
人工智能·python·mysql·机器学习·数据分析
loopdeloop1 小时前
预测模型开发与评估:基于机器学习的数据分析实践
人工智能
Akamai中国1 小时前
分布式AI推理的成功之道
人工智能·分布式·云原生·云计算·云服务·云平台·云主机
m0_678693331 小时前
深度学习笔记23-LSTM实现火灾预测(Tensorflow)
笔记·深度学习·lstm
meisongqing1 小时前
【软件工程】符号执行与约束求解缺陷检测方法
人工智能·算法·软件工程·软件缺陷