8.16模型整理

文章目录

  • [Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation(ECCV2018)](#Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation(ECCV2018))
  • [Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning(2016)](#Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning(2016))
  • [Wide Residual Networks(2017)](#Wide Residual Networks(2017))
  • [mixup: Beyond Empirical Risk Minimization(ICLR2018)](#mixup: Beyond Empirical Risk Minimization(ICLR2018))
  • [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](#Swin Transformer: Hierarchical Vision Transformer using Shifted Windows)
  • [Pyramid Scene Parsing Network(2017)](#Pyramid Scene Parsing Network(2017))
  • [Searching for MobileNetV3(2019)](#Searching for MobileNetV3(2019))
  • [SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size(2016)](#SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size(2016))
  • [Identity Mappings in Deep Residual Networks(2016)](#Identity Mappings in Deep Residual Networks(2016))
  • [Aggregated Residual Transformations for Deep Neural Networks](#Aggregated Residual Transformations for Deep Neural Networks)
  • [MLP-Mixer: An all-MLP Architecture for Vision(2021)](#MLP-Mixer: An all-MLP Architecture for Vision(2021))
  • [MOCO:Momentum Contrast for Unsupervised Visual Representation Learning](#MOCO:Momentum Contrast for Unsupervised Visual Representation Learning)
  • [A ConvNet for the 2020s](#A ConvNet for the 2020s)
  • [MAE:Masked Autoencoders Are Scalable Vision Learners](#MAE:Masked Autoencoders Are Scalable Vision Learners)
  • [Xception: Deep Learning with Depthwise Separable Convolutions](#Xception: Deep Learning with Depthwise Separable Convolutions)
  • [CLIP:Learning Transferable Visual Models From Natural Language Supervision](#CLIP:Learning Transferable Visual Models From Natural Language Supervision)
  • [ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices](#ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices)
  • [ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design](#ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design)
  • [ResNeSt: Split-Attention Networks](#ResNeSt: Split-Attention Networks)

Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation(ECCV2018)

方法

代码地址

DeepLabV3+结构

Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning(2016)

方法



















Wide Residual Networks(2017)

方法

代码地址

我感觉是没啥变化

mixup: Beyond Empirical Risk Minimization(ICLR2018)

方法

主要看代码里面得lam和alpha

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

方法



Vit的滑动窗口版本

Pyramid Scene Parsing Network(2017)


Searching for MobileNetV3(2019)

方法

这是一篇关于网络架构搜索的文章

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size(2016)

方法

Identity Mappings in Deep Residual Networks(2016)

方法

讲了各种各样的跳跃连接分析




Aggregated Residual Transformations for Deep Neural Networks

方法



相当于就是参数减少

MLP-Mixer: An all-MLP Architecture for Vision(2021)

token混合和channel混合

MOCO:Momentum Contrast for Unsupervised Visual Representation Learning

采用不同存储结构,moco采用的是队列

A ConvNet for the 2020s

做到极致的卷积

MAE:Masked Autoencoders Are Scalable Vision Learners

类似于bert,预测mask部分,自监督学习

Xception: Deep Learning with Depthwise Separable Convolutions

方法


CLIP:Learning Transferable Visual Models From Natural Language Supervision

方法

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

方法

分组卷积并混合

ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design

方法

ResNeSt: Split-Attention Networks

本文方法



相关推荐
黎燃15 分钟前
AI驱动的供应链管理:需求预测实战指南
人工智能
天波信息技术分享23 分钟前
AI云电脑盒子技术分析——从“盒子”到“算力云边缘节点”的跃迁
人工智能·电脑
CoderJia程序员甲37 分钟前
GitHub 热榜项目 - 日榜(2025-08-16)
人工智能·ai·开源·github
KirkLin38 分钟前
Kirk:练习时长两年半的AI Coding经验
人工智能·程序员·全栈
mit6.82443 分钟前
[1Prompt1Story] 注意力机制增强 IPCA | 去噪神经网络 UNet | U型架构分步去噪
人工智能·深度学习·神经网络
挽淚1 小时前
(小白向)什么是Prompt,RAG,Agent,Function Calling和MCP ?
人工智能·程序员
Jina AI1 小时前
回归C++: 在GGUF上构建高效的向量模型
人工智能·算法·机器学习·数据挖掘·回归
科大饭桶2 小时前
昇腾AI自学Day2-- 深度学习基础工具与数学
人工智能·pytorch·python·深度学习·numpy
什么都想学的阿超2 小时前
【大语言模型 02】多头注意力深度剖析:为什么需要多个头
人工智能·语言模型·自然语言处理
努力还债的学术吗喽2 小时前
2021 IEEE【论文精读】用GAN让音频隐写术骗过AI检测器 - 对抗深度学习的音频信息隐藏
人工智能·深度学习·生成对抗网络·密码学·音频·gan·隐写