线性代数(四) 特征值&相似矩阵

前言

前面主要讲述的是方程组和矩阵的关系,现在了解下矩阵和矩阵的关系

方阵的特征值与特征向量

假设A为n阶方阵,对于一个数 λ \lambda λ

若存在:非零列向量 α \alpha α,使得: A α ⃗ = λ α ⃗ A\vec{\alpha}=\lambda\vec{\alpha} Aα =λα

  • λ \lambda λ叫做矩阵A的一个特征值

  • α ⃗ \vec{\alpha} α 叫做对应特征值的特征向量

  • 由于 α ⃗ \vec\alpha α 是非零列向量
  • 把 λ \lambda λ作为未知量, A − λ E = 0 A-\lambda E = 0 A−λE=0
  • 因为存在 λ \lambda λ解 => ∣ A − λ E ∣ = 0 |A-\lambda E| = 0 ∣A−λE∣=0

求解特征方程

给一个n阶矩阵A写出特征矩阵
( 4 − 2 1 1 ) − ( λ 0 0 λ ) = ( 4 − λ − 2 1 1 − λ ) \begin{pmatrix} 4 & -2\\ 1 & 1\end{pmatrix} - \begin{pmatrix} \lambda & 0\\ 0 & \lambda\end{pmatrix} = \begin{pmatrix} 4- \lambda & -2\\ 1 & 1-\lambda\end{pmatrix} (41−21)−(λ00λ)=(4−λ1−21−λ)

将特征矩阵转为特征行列式
∣ 4 − λ − 2 1 1 − λ ∣ = − ∣ 1 1 − λ 4 − λ − 2 ∣ = − ∣ 1 1 − λ 0 − 2 − ( 1 − λ ) ∗ ( 4 − λ ) ∣ = 0 \begin{vmatrix} 4- \lambda & -2\\ 1 & 1-\lambda\end{vmatrix} = -\begin{vmatrix} 1 & 1-\lambda\\ 4- \lambda& - 2\end{vmatrix} =-\begin{vmatrix} 1 & 1-\lambda\\ 0 & -2-(1-\lambda) *(4- \lambda) \end{vmatrix} = 0 4−λ1−21−λ =− 14−λ1−λ−2 =− 101−λ−2−(1−λ)∗(4−λ) =0

求出根
λ 2 − 5 λ + 6 = 0 ⟹ λ 1 = 2 , λ 2 = 3 \lambda^2-5\lambda + 6 =0 \Longrightarrow \lambda_1=2 ,\lambda_2=3 λ2−5λ+6=0⟹λ1=2,λ2=3

求解特征值对应的特征向量

  • 将 λ 1 = 2 , λ 2 = 3 \lambda_1=2 ,\lambda_2=3 λ1=2,λ2=3 代入 ( A − λ E ) α ⃗ = 0 (A-\lambda E)\vec{\alpha} = 0 (A−λE)α =0

  • 基本性质
  • 特征值和特征向量,就是类似于 给"坐标" 求他的坐标系的问题。
  • 特征值 λ \lambda λ用于消除"坐标"某一维度,得到 特征向量为这一维度的 "坐标系"
  • 如果出现了 λ \lambda λN重根,则得到的特征向量 "坐标系" 包含N个维度
  • 方阵的行列式=方阵的全部特征值之积
  • 方阵主对角线元素之和=方阵的全部特征值之和

相似矩阵

相似矩阵的定义,可以用坐标系变换的视角来理解

  1. 需要把:A和B看做是两个变换
  2. 那么 A = P − 1 B P A=P^{-1}BP A=P−1BP具体是指:
    • A是P坐标系下的一个<变换>
    • 该<变换>若在标准坐标系下观察则是B变换

例如:在标准坐标系下有一个伸缩变换为B,在P坐标系下相同的伸缩变换观察到的是A

若A和B相似,因观察的视角不同,但本质是相同的变换

相似矩阵的性质

若A和B相似,即 A ∽ B B ∽ A A \backsim B \quad B \backsim A A∽BB∽A

  1. 相似矩阵的行列式值相同
  2. 相似矩阵的特征值相同
  3. 相似矩阵的秩相同
  4. 相似矩阵的迹相同
  5. 相似矩阵的可逆性相同

主要参考

11.3 求解特征值和特征向量(基础解系法)

11.4 特征值与特征向量的性质

11.5特征值与矩阵的迹

1.6 特征根的代数重数与几何重数

11.7 相似矩阵到底在说什么

相关推荐
盛寒18 分钟前
向量与向量组的线性相关性 线性代数
线性代数·算法
灰灰的C旅程7 小时前
详细理解向量叉积
线性代数
ComputerInBook8 小时前
矩阵之方阵与行列式的关系
线性代数·矩阵·行列式·线性变换·方阵的行列式
The_Killer.12 小时前
格密码--数学基础--06对偶空间与对偶格
学习·线性代数·密码学
passxgx19 小时前
9.2 埃尔米特矩阵和酉矩阵
线性代数·矩阵
盛寒19 小时前
等价矩阵和等价向量组
线性代数·算法·矩阵
WoShop商城源码19 小时前
短视频矩阵系统的崛起:批量发布功能与多平台矩阵的未来
人工智能·线性代数·其他·矩阵
dongzhenmao1 天前
P1484 种树,特殊情形下的 WQS 二分转化。
数据结构·c++·windows·线性代数·算法·数学建模·动态规划
mit6.8242 天前
矩阵 | 时域频域傅里叶变换
线性代数·矩阵
The_Killer.2 天前
格密码--数学基础--02基变换、幺模矩阵与 Hermite 标准形
线性代数·矩阵·密码学