线性代数(四) 特征值&相似矩阵

前言

前面主要讲述的是方程组和矩阵的关系,现在了解下矩阵和矩阵的关系

方阵的特征值与特征向量

假设A为n阶方阵,对于一个数 λ \lambda λ

若存在:非零列向量 α \alpha α,使得: A α ⃗ = λ α ⃗ A\vec{\alpha}=\lambda\vec{\alpha} Aα =λα

  • λ \lambda λ叫做矩阵A的一个特征值

  • α ⃗ \vec{\alpha} α 叫做对应特征值的特征向量

  • 由于 α ⃗ \vec\alpha α 是非零列向量
  • 把 λ \lambda λ作为未知量, A − λ E = 0 A-\lambda E = 0 A−λE=0
  • 因为存在 λ \lambda λ解 => ∣ A − λ E ∣ = 0 |A-\lambda E| = 0 ∣A−λE∣=0

求解特征方程

给一个n阶矩阵A写出特征矩阵
( 4 − 2 1 1 ) − ( λ 0 0 λ ) = ( 4 − λ − 2 1 1 − λ ) \begin{pmatrix} 4 & -2\\ 1 & 1\end{pmatrix} - \begin{pmatrix} \lambda & 0\\ 0 & \lambda\end{pmatrix} = \begin{pmatrix} 4- \lambda & -2\\ 1 & 1-\lambda\end{pmatrix} (41−21)−(λ00λ)=(4−λ1−21−λ)

将特征矩阵转为特征行列式
∣ 4 − λ − 2 1 1 − λ ∣ = − ∣ 1 1 − λ 4 − λ − 2 ∣ = − ∣ 1 1 − λ 0 − 2 − ( 1 − λ ) ∗ ( 4 − λ ) ∣ = 0 \begin{vmatrix} 4- \lambda & -2\\ 1 & 1-\lambda\end{vmatrix} = -\begin{vmatrix} 1 & 1-\lambda\\ 4- \lambda& - 2\end{vmatrix} =-\begin{vmatrix} 1 & 1-\lambda\\ 0 & -2-(1-\lambda) *(4- \lambda) \end{vmatrix} = 0 4−λ1−21−λ =− 14−λ1−λ−2 =− 101−λ−2−(1−λ)∗(4−λ) =0

求出根
λ 2 − 5 λ + 6 = 0 ⟹ λ 1 = 2 , λ 2 = 3 \lambda^2-5\lambda + 6 =0 \Longrightarrow \lambda_1=2 ,\lambda_2=3 λ2−5λ+6=0⟹λ1=2,λ2=3

求解特征值对应的特征向量

  • 将 λ 1 = 2 , λ 2 = 3 \lambda_1=2 ,\lambda_2=3 λ1=2,λ2=3 代入 ( A − λ E ) α ⃗ = 0 (A-\lambda E)\vec{\alpha} = 0 (A−λE)α =0

  • 基本性质
  • 特征值和特征向量,就是类似于 给"坐标" 求他的坐标系的问题。
  • 特征值 λ \lambda λ用于消除"坐标"某一维度,得到 特征向量为这一维度的 "坐标系"
  • 如果出现了 λ \lambda λN重根,则得到的特征向量 "坐标系" 包含N个维度
  • 方阵的行列式=方阵的全部特征值之积
  • 方阵主对角线元素之和=方阵的全部特征值之和

相似矩阵

相似矩阵的定义,可以用坐标系变换的视角来理解

  1. 需要把:A和B看做是两个变换
  2. 那么 A = P − 1 B P A=P^{-1}BP A=P−1BP具体是指:
    • A是P坐标系下的一个<变换>
    • 该<变换>若在标准坐标系下观察则是B变换

例如:在标准坐标系下有一个伸缩变换为B,在P坐标系下相同的伸缩变换观察到的是A

若A和B相似,因观察的视角不同,但本质是相同的变换

相似矩阵的性质

若A和B相似,即 A ∽ B B ∽ A A \backsim B \quad B \backsim A A∽BB∽A

  1. 相似矩阵的行列式值相同
  2. 相似矩阵的特征值相同
  3. 相似矩阵的秩相同
  4. 相似矩阵的迹相同
  5. 相似矩阵的可逆性相同

主要参考

11.3 求解特征值和特征向量(基础解系法)

11.4 特征值与特征向量的性质

11.5特征值与矩阵的迹

1.6 特征根的代数重数与几何重数

11.7 相似矩阵到底在说什么

相关推荐
passxgx1 天前
11.1 高斯消元法的应用
线性代数·矩阵
在路上看风景2 天前
2.2 列空间和零空间
线性代数
艾莉丝努力练剑2 天前
【优选算法必刷100题】第031~32题(前缀和算法):连续数组、矩阵区域和
大数据·人工智能·线性代数·算法·矩阵·二维前缀和
Beginner x_u2 天前
线性代数 必背公式总结&&线代计算技巧总结_分块矩阵大总结_秩一矩阵大总结
线性代数·矩阵·特征值·特征向量·计算技巧
没书读了2 天前
计算机组成原理-考前记忆清单
线性代数·算法
oscar9992 天前
高等数学第四章 向量代数与空间解析几何
线性代数·矩阵
西西弗Sisyphus4 天前
线性代数 - 初等变换与线性方程组联系(矩阵展示)
线性代数·矩阵
爱代码的小黄人4 天前
代数余子式矩阵和伴随矩阵的区别
线性代数·矩阵
Olafur_zbj4 天前
【AI】矩阵、向量与乘法
人工智能·线性代数·矩阵
sensen_kiss5 天前
INT301 Bio-computation 生物计算(神经网络)Pt.8 主成分分析(PCA)与无监督学习
神经网络·学习·线性代数·机器学习