详细理解向量叉积

叉积(Cross Product),又称向量积或外积,是三维空间中两个向量的一种二元运算,结果是一个新的向量。它与点积(内积)不同,叉积的结果是向量而不是标量。

定义

给定两个三维向量 a = (a₁, a₂, a₃) 和 b = (b₁, b₂, b₃),它们的叉积 a × b 定义为:

a×b=(a2b3−a3b2, a3b1−a1b3, a1b2−a2b1) \mathbf{a} \times \mathbf{b} = (a_2b_3 - a_3b_2, \, a_3b_1 - a_1b_3, \, a_1b_2 - a_2b_1) a×b=(a2b3−a3b2,a3b1−a1b3,a1b2−a2b1)

也可以用行列式形式表示:

a×b=∣ijka1a2a3b1b2b3∣ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ \end{vmatrix} a×b= ia1b1ja2b2ka3b3

其中 i , j , k 分别是 x、y、z 轴的单位向量。

几何意义

  1. 方向 :叉积的结果向量 a × b 垂直于 ab 所在的平面,方向遵循右手定则(右手四指从 a 转向 b ,拇指指向 a × b 的方向)。

  2. 大小 :叉积的模长等于 ab 的模长与它们夹角 θ 的正弦的乘积:
    ∥a×b∥=∥a∥∥b∥sin⁡θ \|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin\theta ∥a×b∥=∥a∥∥b∥sinθ

    若a、b均归一化,当a、b平行时结果为0,当a、b垂直时结果为1,叉积的模长代表了两个向量的误差。

    • 几何上表示以 ab 为邻边的平行四边形的面积。

性质

  1. 反交换律a × b = −(b × a)
  2. 分配律a × (b + c) = a × b + a × c
  3. 与标量乘法结合 :(ka ) × b = a × (kb ) = k(a × b)。
  4. 平行向量叉积为零 :若 ab 平行(θ = 0° 或 180°),则 a × b = 0
相关推荐
一碗姜汤17 小时前
【统计基础】卡尔曼滤波,矩阵对迹求导,Joseph Form,条件数
线性代数·矩阵
sunfove17 小时前
麦克斯韦方程组 (Maxwell‘s Equations) 的完整推导
线性代数·算法·矩阵
ComputerInBook19 小时前
代数学基本概念理解——幺正矩阵(Unitary matrix)(酉矩阵?)
线性代数·矩阵·正交矩阵·幺正矩阵·酉矩阵
AI科技星21 小时前
光速飞行器动力学方程的第一性原理推导、验证与范式革命
数据结构·人工智能·线性代数·算法·机器学习·概率论
一碗姜汤1 天前
【统计基础】从线性代数的直观角度理解SVD奇异值分解
线性代数
好奇龙猫1 天前
【大学院-筆記試験練習:线性代数和数据结构(5)】
数据结构·线性代数
愚公搬代码2 天前
【愚公系列】《AI+直播营销》015-直播的选品策略(设计直播产品矩阵)
人工智能·线性代数·矩阵
paixingbang2 天前
2026短视频矩阵服务商评测报告 星链引擎、河南云罗、数阶智能
大数据·线性代数·矩阵
scott1985122 天前
NVIDIA GPU内部结构:高性能矩阵乘法内核剖析
线性代数·矩阵·gpu·nvidia·cuda
AI科技星2 天前
能量绝对性与几何本源:统一场论能量方程的第一性原理推导、验证与范式革命
服务器·人工智能·科技·线性代数·算法·机器学习·生活