OpenCV之特征点匹配

特征点选取

特征点探测方法有goodFeaturesToTrack(),cornerHarris()和SURF()。一般使用goodFeaturesToTrack()就能获得很好的特征点。goodFeaturesToTrack()定义:

void goodFeaturesToTrack( InputArray image, 
                          OutputArray corners,
                          int maxCorners, 
                          double qualityLevel, 
                          double minDistance,
                          InputArray mask = noArray(), 
                          int blockSize = 3,
                          bool useHarrisDetector = false, 
                          double k = 0.04 );

image:源图像;

corners:检测到的特征点位置;

maxcorner:为返回的特征点个数设置上限。

qualityLevel:反映出一个角形特征在它之前的强度,设置较低的值会返回更多的点;

minDistance:特征点之间的最小距离;

mask:如果mask(i,j)=0,那么不考虑像素p(i,j);

blockSize:一个用于计算的像素周围的大小

useHarrisDetector:是否使用原来的哈里斯角探测器或一个最小特征值准则。

k:哈里斯角探测器的一个自由参数。

特征点跟踪

特征点跟踪使用光流算法:利用OpenCV光流算法实现视频特征点跟踪_视图猿人的博客-CSDN博客

为了进一步提高跟踪的准确度,采用正向和反向两次光流跟踪:

对于特征点P(i,j),其正向光流算法计算出的位置为D(x,y);

对D(x,y)点再次使用光流算法,得到位置Q(m,n);

如果P==Q,也就是两个位置相同,那么就留下特征点P

相关推荐
真智AI19 分钟前
使用 DistilBERT 进行资源高效的自然语言处理
人工智能·自然语言处理
OpenBuild.xyz24 分钟前
我是如何从 0 到 1 找到 Web3 工作的?
人工智能·web3·去中心化·区块链·智能合约
Sui_Network25 分钟前
Sui 如何支持各种类型的 Web3 游戏
大数据·数据库·人工智能·游戏·web3·区块链
ZKNOW甄知科技1 小时前
IT服务运营管理体系的常用方法论与实践指南(上)
大数据·数据库·人工智能
Luke Ewin1 小时前
根据音频中的不同讲述人声音进行分离音频 | 基于ai的说话人声音分离项目
人工智能·python·音视频·语音识别·声纹识别·asr·3d-speaker
終不似少年遊*1 小时前
循环神经网络RNN原理与优化
人工智能·rnn·深度学习·神经网络·lstm
时间很奇妙!1 小时前
CNN 卷积神经网络【更新中】
人工智能·深度学习·cnn
深图智能1 小时前
OpenCV 4.10.0 图像处理基础入门教程
图像处理·opencv·计算机视觉
菩提云1 小时前
Deepseek存算分离安全部署手册
人工智能·深度学习·安全·docker·容器
车到山前必有“陆”1 小时前
智能硬件解决方案
大数据·人工智能·经验分享·科技·产品运营·智能硬件