OpenCV之特征点匹配

特征点选取

特征点探测方法有goodFeaturesToTrack(),cornerHarris()和SURF()。一般使用goodFeaturesToTrack()就能获得很好的特征点。goodFeaturesToTrack()定义:

复制代码
void goodFeaturesToTrack( InputArray image, 
                          OutputArray corners,
                          int maxCorners, 
                          double qualityLevel, 
                          double minDistance,
                          InputArray mask = noArray(), 
                          int blockSize = 3,
                          bool useHarrisDetector = false, 
                          double k = 0.04 );

image:源图像;

corners:检测到的特征点位置;

maxcorner:为返回的特征点个数设置上限。

qualityLevel:反映出一个角形特征在它之前的强度,设置较低的值会返回更多的点;

minDistance:特征点之间的最小距离;

mask:如果mask(i,j)=0,那么不考虑像素p(i,j);

blockSize:一个用于计算的像素周围的大小

useHarrisDetector:是否使用原来的哈里斯角探测器或一个最小特征值准则。

k:哈里斯角探测器的一个自由参数。

特征点跟踪

特征点跟踪使用光流算法:利用OpenCV光流算法实现视频特征点跟踪_视图猿人的博客-CSDN博客

为了进一步提高跟踪的准确度,采用正向和反向两次光流跟踪:

对于特征点P(i,j),其正向光流算法计算出的位置为D(x,y);

对D(x,y)点再次使用光流算法,得到位置Q(m,n);

如果P==Q,也就是两个位置相同,那么就留下特征点P

相关推荐
囊中之锥.15 小时前
《从零到实战:基于 PyTorch 的手写数字识别完整流程解析》
人工智能·pytorch·python
编码小哥15 小时前
OpenCV背景减法:视频中的运动物体检测
人工智能·opencv·音视频
AI殉道师15 小时前
Vercel 重磅发布 agent-browser:AI Agent 浏览器自动化的新纪元来了
运维·人工智能·自动化
m0_5649149215 小时前
Deepseek论文深度解读--“条件记忆”模块(Engram):查算分离开启LLM双稀疏轴时代
人工智能
Oculus Reparo!15 小时前
书生大模型强化学习 RL 实践(Internlm2.5-1.8B swift GRPO gsm8k)
人工智能
StarChainTech15 小时前
无人机租赁平台:开启智能租赁新时代
大数据·人工智能·微信小程序·小程序·无人机·软件需求
Quintus五等升15 小时前
深度学习②|实现人数回归预测
人工智能·深度学习·学习·机器学习·回归
可乐要加冰^-^15 小时前
RL for LLM(large language model)
人工智能·语言模型·自然语言处理
大模型最新论文速读16 小时前
ProFit: 屏蔽低概率 token,解决 SFT 过拟合问题
人工智能·深度学习·机器学习·语言模型·自然语言处理
cskywit16 小时前
VMamba环境本地适配配置
人工智能·深度学习·mamba