卷积神经网络实现天气图像分类 - P3


目录


环境

  • 系统: Linux
  • 语言: Python3.8.10
  • 深度学习框架: Pyto2.0.0+cu118

步骤

环境设置

首先是包引用

python 复制代码
import torch # pytorch主包
import torch.nn as nn # 模型相关的包,创建一个别名少打点字
import torch.optim as optim # 优化器包,创建一个别名
import torch.nn.functional as F # 可以直接调用的函数,一般用来调用里面在的激活函数

from torch.utils.data import DataLoader, random_split # 数据迭代包装器,数据集切分
from torchvision import datasets, transforms # 图像类数据集和图像转换操作函数

import matplotlib.pyplot as plt # 图表库
from torchinfo import summary # 打印模型结构

查询当前环境的GPU是否可用

python 复制代码
print(torch.cuda.is_available())

创建一个全局的设备对象,用于使各类数据处于相同的设备中

python 复制代码
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 当GPU不可用时,使用CPU

# 如果是Mac系统可以多增加一个if条件,启用mps
if torch.backends.mps.is_available():
	device = torch.device('mps')

数据准备

这次的天气图像是由K同学提供的,我提前下载下来放在了当前目录下的data文件夹中

加载文件夹中的图像数据集,要求文件夹按照不同的分类并列存储,一个简要的文件树为

python 复制代码
data
	cloudy
	rain
	shine
	sunrise

使用torchvisio.datasets中的方法加载自定义图像数据集,可以免除一些文章中推荐的自己创建Dataset,个人感觉十分方便,而且这种文件的存储结构也兼容keras框架。

首先我们使用原生的PythonAPI来遍历一下文件夹,收集一下分类信息

python 复制代码
import pathlib

data_lib = pathlib.Path('data')
class_names = [f.parts[-1] for f in data_lib.glob('*')] # 将data下级文件夹作为分类名
print(class_names)

在所有的图片中随机选择几个文件打印一下信息。

python 复制代码
import numpy as np
from PIL import Image
import random

image_list = list(data_lib.glob('*/*'))
for _ in range(10):
	print(np.array(Image.open(random.choice(image_list))).shape)

通过打印图像信息,发现图像的大小并不一致,需要在创建数据集时对图像进行缩放到统一的大小。

python 复制代码
transform = transforms.Compose([
	transforms.Resize([224, 224]), # 将图像都缩放到224x224
	transforms.ToTensor(), # 将图像转换成pytorch tensor对象
]) # 定义一个全局的transform, 用于对齐训练验证以及测试数据

接下来就可以正式从文件夹中加载数据集了

python 复制代码
dataset = datasets.ImageFolder('data', transform=tranform)

现在把整文件夹下的所有文件加载为了一个数据集,需要根据一定的比例划分为训练和验证集,方便模型的评估

python 复制代码
train_size = int(len(dataset) *0.8) # 80% 训练集 20% 验证集
eval_size = len(dataset) - train_size

train_dataset, eval_dataset = random_split(dataset, [train_size, eval_size])

创建完数据集,打印一下数据集中的图像

python 复制代码
plt.figure(figsize=(20, 4))
for i in range(20):
	image, label = train_dataset[i]
	plt.subplot(2, 10, i+1)
	plt.imshow(image.permute(1,2,0)) # pytorch的tensor格式为N,C,H,W,在imshow展示需要将格式变成H,W,C格式,使用permute切换一下
	plt.axis('off')
	plt.title(class_names[label])

最后用DataLoader包装一下数据集,方便遍历

python 复制代码
batch_size = 32
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
eval_loader = DataLoader(eval_loader, batch_size=batch_size)

模型设计

使用一个带有BatchNorm的卷积神经网络来处理分类问题

python 复制代码
class Network(nn.Module):
	def __init__(self, num_classes):
		super().__init__()
		self.conv1 = nn.Conv2d(3, 12, kernel_size=5, strides=1)
		self.conv2 = nn.Conv2d(12, 12, kernel_size=5, strides=1)
		self.conv3 = nn.Conv2d(12, 24, kernel_size=5, strides=1)
		self.conv4 = nn.Conv2d(24, 24, kernel_size=5, strides=1)

		self.maxpool = nn.MaxPool2d(2)

		self.bn1 = nn.BatchNorm2d(12)
		self.bn2 = nn.BatchNorm2d(12)
		self.bn3 = nn.BatchNorm2d(24)
		self.bn4 = nn.BatchNorm2d(24)

		# 224 [-> 220 -> 216 -> 108] [-> 104 -> 100 -> 50]
		self.fc1 = nn.Linear(50*50*24, num_classes)
	
	def forward(self, x):
		x = F.relu(self.bn1(self.conv1(x)))
		x = F.relu(self.bn2(self.conv2(x)))
		x = self.maxpool(x)
		x = F.relu(self.bn3(self.conv3(x)))
		x = F.relu(self.bn4(self.conv4(x)))
		x = self.maxpool(x)
	
		x = x.view(x.size(0), -1)
		
		x = self.fc1(x)

		return x

model = Network(len(class_names)).to(device) # 别忘了把定义的模型拉入共享中
summary(model, input_size=(32, 3, 224, 224))

模型训练

首先定义一下每个epoch内训练和评估的逻辑

python 复制代码
def train(train_loader, model, loss_fn, optimizer):
	train_size = len(train_loader.dataset)
	num_batches = len(train_loader)

	train_loss, train_acc = 0, 0
	for x, y in train_loader:
		x, y = x.to(device), y.to(device)
		
		preds = model(x)
		loss = loss_fn(preds, y)

		optimizer.zero_grad()
		loss.backward()
		optimizer.step()

		train_loss += loss.item()
		train_acc += (preds.argmax(1) == y).type(torch.float).sum().item()
	train_loss /= num_batches
	train_acc /= train_size
	return train_loss, train_acc
	
def eval(eval_loader, model, loss_fn):
	eval_size = len(eval_loader.dataset)
	num_batches = len(eval_loader)
	eval_loss, eval_acc = 0, 0
	for x, y in eval_loader:
		x, y = x.to(device), y.to(device)

		preds = model(x)
		loss = loss_fn(preds, y)

		eval_loss += loss.item()
		eval_acc += (preds.argmax(1) == y).type(torch.float).sum().item()
	eval_loss /= num_batches
	eval_acc /= eval_size

	return eval_loss, eval_acc

然后编写代码进行训练

python 复制代码
loss_fn = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-3)
epochs = 10

train_loss, train_acc = [], []
eval_loss, eval_acc =[], []
for epoch in range(epochs):
	model.train()
	epoch_train_loss, epoch_train_acc = train(train_loader, model, loss_fn, optimizer)
	model.eval()
	model.no_grad():
		epoch_eval_loss, epoch_eval_acc = test(eval_loader, model, loss_fn)

结果展示

基于训练和测试数据展示结果

python 复制代码
range_epochs = range(len(train_loss))
plt.figure(figsize=(12, 4))
plt.subplot(1,2,1)
plt.plot(range_epochs, train_loss, label='train loss')
plt.plot(range_epochs, eval_loss, label='validation loss')
plt.legend(loc='upper right')
plt.title('Loss')

plt.subplot(1,2,2)
plt.plot(range_epochs, train_acc, label='train accuracy')
plt.plot(range_epochs, eval_acc, label='validation accuracy')
plt.legend(loc='lower right')
plt.title('Accuracy')

总结与心得体会

通过对训练过程的观察,训练过程中的数据波动很大,并且验证集上的最好正确率只有82%。

目前行业都流行小卷积核,于是我把卷积核调整为了3x3,并且每次卷积后我都进行池化操作,直到通道数为64,由于天气识别时,背景信息也比较重要,高层的卷积操作后我使用平均池化代替低层使用的最大池化,加大了全连接层的Dropout惩罚比重,用来抑制过拟合问题。最后的模型如下:

python 复制代码
class Network(nn.Module):
    def __init__(self, num_classes):
        super().__init__()
        
        self.conv1 = nn.Conv2d(3, 16, kernel_size=3)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=3)
        self.conv3 = nn.Conv2d(32, 64, kernel_size=3)
        self.conv4 = nn.Conv2d(64, 64, kernel_size=3)
        
        self.bn1 = nn.BatchNorm2d(16)
        self.bn2 = nn.BatchNorm2d(32)
        self.bn3 = nn.BatchNorm2d(64)
        self.bn4 = nn.BatchNorm2d(64)
        
        self.maxpool = nn.MaxPool2d(2)
        self.avgpool = nn.AvgPool2d(2)
        self.dropout = nn.Dropout(0.5)
        
        # 224 -> 222-> 111 -> 109 -> 54 -> 52 -> 50 -> 25
        self.fc1 = nn.Linear(25*25*64, 128)
        self.fc2 = nn.Linear(128, num_classes)
        
    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = self.maxpool(x)
        x = F.relu(self.bn2(self.conv2(x)))
        x = self.avgpool(x)
        x = F.relu(self.bn3(self.conv3(x)))
        x = F.relu(self.bn4(self.conv4(x)))
        x = self.avgpool(x)
        
        
        x = x.view(x.size(0), -1)
        x = self.dropout(x)
        x = F.relu(self.fc1(x))
        x = self.dropout(x)
        x = self.fc2(x)
        return x

然后增大训练的epochs为30,学习率降低为1e-4

python 复制代码
optimizer = optim.Adam(model.parameters(), lr=1e-4)
epochs = 30

训练结果如下

可以看到,验证集上的正确率最高达到了95%以上

在数据集中随机选取一个图像进行预测展示

python 复制代码
image_path = random.choice(image_list)
image_input = transform(Image.open(image_path))
image_input = image_input.unsqueeze(0).to(device)
model.eval()
pred = model(image_input)

plt.figure(figsize=(5, 5))
plt.imshow(image_input.cpu().squeeze(0).permute(1,2,0))
plt.axis('off')
plt.title(class_names[pred.argmax(1)])

结果如下

相关推荐
HuggingFace3 小时前
Hugging Face 开源机器人 Reachy Mini 开启预定
人工智能
企企通采购云平台4 小时前
「天元宠物」×企企通,加速数智化升级,“链”接萌宠消费新蓝海
大数据·人工智能·宠物
超级小忍4 小时前
Spring AI ETL Pipeline使用指南
人工智能·spring
张较瘦_4 小时前
[论文阅读] 人工智能 | 读懂Meta-Fair:让LLM摆脱偏见的自动化测试新方法
论文阅读·人工智能
巴伦是只猫5 小时前
【机器学习笔记 Ⅲ】4 特征选择
人工智能·笔记·机器学习
好心的小明5 小时前
【王树森推荐系统】召回11:地理位置召回、作者召回、缓存召回
人工智能·缓存·推荐系统·推荐算法
lishaoan775 小时前
使用tensorflow的线性回归的例子(十二)
人工智能·tensorflow·线性回归·戴明回归
二DUAN帝6 小时前
UE实现路径回放、自动驾驶功能简记
人工智能·websocket·机器学习·ue5·自动驾驶·ue4·cesiumforue
zskj_zhyl6 小时前
AI健康小屋“15分钟服务圈”:如何重构社区健康生态?
大数据·人工智能·物联网
荔枝味啊~6 小时前
相机位姿估计
人工智能·计算机视觉·3d