shell和Python 两种方法分别画 iostat的监控图

在服务器存储的测试中,经常需要看performance的性能曲线,这样最能直接观察HDD或者SSD的性能曲线。

如下这是一个针对HDD跑Fio读写的iostat监控log,下面介绍一下分别用shell 和Python3 写画iostat图的方法

1 shell脚本

环境:linux OS gnuplot工具

第一步 :解析iostat log。提取要作图的一行

bash 复制代码
#!/bin/bash
hdd=$1
cat ${hdd}_iostat.log  |grep -i Device |head -1  >${hdd}_iostat.txt
cat ${hdd}_iostat.log  |grep -i ${hdd}  >>${hdd}_iostat.txt

第二步:把画图的列(监控读写的IOPS)求出来

bash 复制代码
#!/bin/bash
hdd=$1
cat ${hdd}_iostat.log  |grep -i Device |head -1  >${hdd}_iostat.txt
cat ${hdd}_iostat.log  |grep -i ${hdd}  >>${hdd}_iostat.txt
num_read_iops=`head -1 ${hdd}_iostat.txt | awk  '{for (i=1;i<=NF;i++) {if ($i=="r/s") {print i}}}'`
num_write_iops=`head -1 ${hdd}_iostat.txt | awk  '{for (i=1;i<=NF;i++) {if ($i=="w/s") {print i}}}'`

第三步:直接调用gnuplot工具作图

bash 复制代码
#!/bin/bash
hdd=$1
cat ${hdd}_iostat.log  |grep -i Device |head -1  >${hdd}_iostat.txt
cat ${hdd}_iostat.log  |grep -i ${hdd}  >>${hdd}_iostat.txt
num_read_iops=`head -1 ${hdd}_iostat.txt | awk  '{for (i=1;i<=NF;i++) {if ($i=="r/s") {print i}}}'`
num_write_iops=`head -1 ${hdd}_iostat.txt | awk  '{for (i=1;i<=NF;i++) {if ($i=="w/s") {print i}}}'`
echo "
      	set terminal png 
      	set title 'Random_${hdd}_IOPS'
      	set output 'IOPS_${hdd}.png'
      	set xlabel 'count:1s'
      	set ylabel  'IOPS'
        set key right top
      	plot '${hdd}_iostat.txt' using :$num_write_iops  title 'w/s' with lines lw 1,\
       '${hdd}_iostat.txt' using :$num_read_iops title 'r/s' with lines lw 1
      	" | gnuplot

运行 :bash gnuplot.sh sde

2 python 脚本

环境:python3

python库: sys(引用参数), re(正则匹配), pandas(做表格), matplotlib(画图工具)

第一步:解析iostat log

python 复制代码
import sys
import re
import pandas as pd
from matplotlib import pyplot as plt
hdd = sys.argv[1]
rs = []
ws = []
logfile = open(f"{hdd}_iostat.log","r")

for log in logfile:
    if hdd in log:
        data = re.sub(' +', ' ', log)
        rs.append(data.split(" ")[3])
        ws.append(data.split(" ")[4])

第二步:将需要作图的列(这次监控带宽)导入CSV

python 复制代码
import sys
import re
import pandas as pd
from matplotlib import pyplot as plt
hdd = sys.argv[1]
rs = []
ws = []
logfile = open(f"{hdd}_iostat.log","r")

for log in logfile:
    if hdd in log:
        data = re.sub(' +', ' ', log)
        rs.append(data.split(" ")[3])
        ws.append(data.split(" ")[4])

dic = {"read": rs, "write": ws}
df = pd.DataFrame(dic)
df.to_csv(f"{hdd}_iostat.csv")
data = pd.read_csv(f"{hdd}_iostat.csv")

第三步:用matplotlib库直接作图

python 复制代码
import sys
import re
import pandas as pd
from matplotlib import pyplot as plt
hdd = sys.argv[1]
rs = []
ws = []
logfile = open(f"{hdd}_iostat.log","r")

for log in logfile:
    if hdd in log:
        data = re.sub(' +', ' ', log)
        rs.append(data.split(" ")[3])
        ws.append(data.split(" ")[4])

dic = {"read": rs, "write": ws}
df = pd.DataFrame(dic)
df.to_csv(f"{hdd}_iostat.csv")
data = pd.read_csv(f"{hdd}_iostat.csv")

fig = plt.figure(figsize=(10, 6), dpi=300)
x = data.iloc[:, 0]
y1 = data.iloc[:, 1]
y2 = data.iloc[:, 2]
plt.xlabel(u'time (s)', size=10)
plt.ylabel("BW(kB/s)")
plt.plot(x, y1, label='rKB/s', color='orange', linestyle=':')
plt.plot(x, y2, label='wKB/s', color='cyan', linestyle='-.')
plt.legend(loc="upper right")
plt.title(f"{hdd}_BW")
plt.grid(alpha=0.4)
plt.savefig(str(hdd) + ".png")

运行 :python3 plot.py sde

相关推荐
ValhallaCoder1 小时前
hot100-二叉树I
数据结构·python·算法·二叉树
wdfk_prog1 小时前
[Linux]学习笔记系列 -- [drivers][input]input
linux·笔记·学习
七夜zippoe1 小时前
CANN Runtime任务描述序列化与持久化源码深度解码
大数据·运维·服务器·cann
盟接之桥1 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
猫头虎2 小时前
如何排查并解决项目启动时报错Error encountered while processing: java.io.IOException: closed 的问题
java·开发语言·jvm·spring boot·python·开源·maven
忆~遂愿2 小时前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能
湘-枫叶情缘2 小时前
1990:种下那棵不落叶的树-第6集 圆明园的对话
linux·系统架构
八零后琐话2 小时前
干货:程序员必备性能分析工具——Arthas火焰图
开发语言·python
Fcy6483 小时前
Linux下 进程(一)(冯诺依曼体系、操作系统、进程基本概念与基本操作)
linux·运维·服务器·进程