shell和Python 两种方法分别画 iostat的监控图

在服务器存储的测试中,经常需要看performance的性能曲线,这样最能直接观察HDD或者SSD的性能曲线。

如下这是一个针对HDD跑Fio读写的iostat监控log,下面介绍一下分别用shell 和Python3 写画iostat图的方法

1 shell脚本

环境:linux OS gnuplot工具

第一步 :解析iostat log。提取要作图的一行

bash 复制代码
#!/bin/bash
hdd=$1
cat ${hdd}_iostat.log  |grep -i Device |head -1  >${hdd}_iostat.txt
cat ${hdd}_iostat.log  |grep -i ${hdd}  >>${hdd}_iostat.txt

第二步:把画图的列(监控读写的IOPS)求出来

bash 复制代码
#!/bin/bash
hdd=$1
cat ${hdd}_iostat.log  |grep -i Device |head -1  >${hdd}_iostat.txt
cat ${hdd}_iostat.log  |grep -i ${hdd}  >>${hdd}_iostat.txt
num_read_iops=`head -1 ${hdd}_iostat.txt | awk  '{for (i=1;i<=NF;i++) {if ($i=="r/s") {print i}}}'`
num_write_iops=`head -1 ${hdd}_iostat.txt | awk  '{for (i=1;i<=NF;i++) {if ($i=="w/s") {print i}}}'`

第三步:直接调用gnuplot工具作图

bash 复制代码
#!/bin/bash
hdd=$1
cat ${hdd}_iostat.log  |grep -i Device |head -1  >${hdd}_iostat.txt
cat ${hdd}_iostat.log  |grep -i ${hdd}  >>${hdd}_iostat.txt
num_read_iops=`head -1 ${hdd}_iostat.txt | awk  '{for (i=1;i<=NF;i++) {if ($i=="r/s") {print i}}}'`
num_write_iops=`head -1 ${hdd}_iostat.txt | awk  '{for (i=1;i<=NF;i++) {if ($i=="w/s") {print i}}}'`
echo "
      	set terminal png 
      	set title 'Random_${hdd}_IOPS'
      	set output 'IOPS_${hdd}.png'
      	set xlabel 'count:1s'
      	set ylabel  'IOPS'
        set key right top
      	plot '${hdd}_iostat.txt' using :$num_write_iops  title 'w/s' with lines lw 1,\
       '${hdd}_iostat.txt' using :$num_read_iops title 'r/s' with lines lw 1
      	" | gnuplot

运行 :bash gnuplot.sh sde

2 python 脚本

环境:python3

python库: sys(引用参数), re(正则匹配), pandas(做表格), matplotlib(画图工具)

第一步:解析iostat log

python 复制代码
import sys
import re
import pandas as pd
from matplotlib import pyplot as plt
hdd = sys.argv[1]
rs = []
ws = []
logfile = open(f"{hdd}_iostat.log","r")

for log in logfile:
    if hdd in log:
        data = re.sub(' +', ' ', log)
        rs.append(data.split(" ")[3])
        ws.append(data.split(" ")[4])

第二步:将需要作图的列(这次监控带宽)导入CSV

python 复制代码
import sys
import re
import pandas as pd
from matplotlib import pyplot as plt
hdd = sys.argv[1]
rs = []
ws = []
logfile = open(f"{hdd}_iostat.log","r")

for log in logfile:
    if hdd in log:
        data = re.sub(' +', ' ', log)
        rs.append(data.split(" ")[3])
        ws.append(data.split(" ")[4])

dic = {"read": rs, "write": ws}
df = pd.DataFrame(dic)
df.to_csv(f"{hdd}_iostat.csv")
data = pd.read_csv(f"{hdd}_iostat.csv")

第三步:用matplotlib库直接作图

python 复制代码
import sys
import re
import pandas as pd
from matplotlib import pyplot as plt
hdd = sys.argv[1]
rs = []
ws = []
logfile = open(f"{hdd}_iostat.log","r")

for log in logfile:
    if hdd in log:
        data = re.sub(' +', ' ', log)
        rs.append(data.split(" ")[3])
        ws.append(data.split(" ")[4])

dic = {"read": rs, "write": ws}
df = pd.DataFrame(dic)
df.to_csv(f"{hdd}_iostat.csv")
data = pd.read_csv(f"{hdd}_iostat.csv")

fig = plt.figure(figsize=(10, 6), dpi=300)
x = data.iloc[:, 0]
y1 = data.iloc[:, 1]
y2 = data.iloc[:, 2]
plt.xlabel(u'time (s)', size=10)
plt.ylabel("BW(kB/s)")
plt.plot(x, y1, label='rKB/s', color='orange', linestyle=':')
plt.plot(x, y2, label='wKB/s', color='cyan', linestyle='-.')
plt.legend(loc="upper right")
plt.title(f"{hdd}_BW")
plt.grid(alpha=0.4)
plt.savefig(str(hdd) + ".png")

运行 :python3 plot.py sde

相关推荐
晚枫歌F17 分钟前
Dpdk介绍
linux·服务器
吃茄子的猫23 分钟前
quecpython中&的具体含义和使用场景
开发语言·python
じ☆冷颜〃33 分钟前
黎曼几何驱动的算法与系统设计:理论、实践与跨领域应用
笔记·python·深度学习·网络协议·算法·机器学习
数据大魔方1 小时前
【期货量化实战】日内动量策略:顺势而为的短线交易法(Python源码)
开发语言·数据库·python·mysql·算法·github·程序员创富
APIshop1 小时前
Python 爬虫获取 item_get_web —— 淘宝商品 SKU、详情图、券后价全流程解析
前端·爬虫·python
风送雨1 小时前
FastMCP 2.0 服务端开发教学文档(下)
服务器·前端·网络·人工智能·python·ai
效率客栈老秦1 小时前
Python Trae提示词开发实战(8):数据采集与清洗一体化方案让效率提升10倍
人工智能·python·ai·提示词·trae
哈里谢顿1 小时前
一条 Python 语句在 C 扩展里到底怎么跑
python
znhy_231 小时前
day46打卡
python
Edward.W2 小时前
Python uv:新一代Python包管理工具,彻底改变开发体验
开发语言·python·uv