更好的 3D 网格,从重建到生成式 AI

推荐:使用 NSDT场景编辑器 助你快速搭建可二次编辑的3D应用场景

这些生成的 3D 模型通常提取为标准三角形网格。网格表示提供了许多好处,包括支持现有软件包、高级硬件加速和支持物理仿真。但是,并非所有网格都是平等的,这些优势只能在高质量网格上实现。

NVIDIA 最近的研究发现了一种名为 FlexiCubes 的新方法,用于在 3D 管线中生成高质量的网格,从而提高各种应用程序的质量。

灵活立方体网格生成

图1.通过FlexiCube重建的示例网格

从重建到模拟的 AI 管道的共同要素是网格是通过优化过程生成的。在过程的每个步骤中,都会更新表示以更好地匹配所需的输出。

FlexiCubes网格生成的新思想是引入额外的灵活参数,以精确调整生成的网格。通过在优化过程中更新这些参数,可以大大提高网格质量。

熟悉基于网格的管道的人过去可能使用行进立方体来提取网格。FlexiCubes可以用作基于优化的AI管道中行进立方体的直接替代品。

图2.灵活立方体高品质网眼

FlexiCubes 从摄影测量和生成 AI 等神经工作流程中生成高质量的网格。

更好的网格,更好的人工智能

FlexiCubes 网格提取改进了许多最近的 3D 网格生成管道的结果,生成更高质量的网格,在表示复杂形状中的精细细节方面做得更好。

生成的网格也非常适合物理仿真,其中网格质量对于使仿真高效和稳健尤为重要。四面体网格已准备好用于开箱即用的物理模拟。

图3.柔性立方体四面体网格示例

立即探索灵活立方体

这项研究是作为 NVIDIA 进步的一部分在洛杉矶举行的 SIGGRAPH 2023 上展示的。有关新方法的详细信息,请参阅用于基于梯度的网格优化的灵活等值面提取。在FlexiCubes项目页面上探索更多结果。

原文链接:更好的 3D 网格,从重建到生成式 AI (mvrlink.com)

相关推荐
jndingxin10 分钟前
OpenCV直线段检测算法类cv::line_descriptor::LSDDetector
人工智能·opencv·算法
胖达不服输14 分钟前
「日拱一码」027 深度学习库——PyTorch Geometric(PyG)
人工智能·pytorch·深度学习·pyg·深度学习库
deephub15 分钟前
贝叶斯状态空间神经网络:融合概率推理和状态空间实现高精度预测和可解释性
人工智能·深度学习·神经网络·贝叶斯概率·状态空间
壹立科技39 分钟前
壹脉销客AI电子名片源码核心架构
人工智能·架构·电子名片
YUQI的博客1 小时前
小白入门:通过手搓神经网络理解深度学习
人工智能·深度学习·神经网络
笑小枫1 小时前
Pytorch使用GPU训练全过程,包含安装CUDA、cuDNN、PyTorch
人工智能·pytorch·python
Blossom.1181 小时前
深度学习中的注意力机制:原理、应用与实践
人工智能·深度学习·神经网络·机器学习·生成对抗网络·计算机视觉·sklearn
飞哥数智坊2 小时前
Cursor替代方案整理,附模型不可用进阶解决方案
人工智能·claude·cursor
摸鱼仙人~2 小时前
现代人工智能综合分类:大模型时代的架构、模态与生态系统
人工智能·分类·数据挖掘
麻雀无能为力2 小时前
CAU数据挖掘第四章 分类问题
人工智能·分类·数据挖掘·中国农业大学计算机