更好的 3D 网格,从重建到生成式 AI

推荐:使用 NSDT场景编辑器 助你快速搭建可二次编辑的3D应用场景

这些生成的 3D 模型通常提取为标准三角形网格。网格表示提供了许多好处,包括支持现有软件包、高级硬件加速和支持物理仿真。但是,并非所有网格都是平等的,这些优势只能在高质量网格上实现。

NVIDIA 最近的研究发现了一种名为 FlexiCubes 的新方法,用于在 3D 管线中生成高质量的网格,从而提高各种应用程序的质量。

灵活立方体网格生成

图1.通过FlexiCube重建的示例网格

从重建到模拟的 AI 管道的共同要素是网格是通过优化过程生成的。在过程的每个步骤中,都会更新表示以更好地匹配所需的输出。

FlexiCubes网格生成的新思想是引入额外的灵活参数,以精确调整生成的网格。通过在优化过程中更新这些参数,可以大大提高网格质量。

熟悉基于网格的管道的人过去可能使用行进立方体来提取网格。FlexiCubes可以用作基于优化的AI管道中行进立方体的直接替代品。

图2.灵活立方体高品质网眼

FlexiCubes 从摄影测量和生成 AI 等神经工作流程中生成高质量的网格。

更好的网格,更好的人工智能

FlexiCubes 网格提取改进了许多最近的 3D 网格生成管道的结果,生成更高质量的网格,在表示复杂形状中的精细细节方面做得更好。

生成的网格也非常适合物理仿真,其中网格质量对于使仿真高效和稳健尤为重要。四面体网格已准备好用于开箱即用的物理模拟。

图3.柔性立方体四面体网格示例

立即探索灵活立方体

这项研究是作为 NVIDIA 进步的一部分在洛杉矶举行的 SIGGRAPH 2023 上展示的。有关新方法的详细信息,请参阅用于基于梯度的网格优化的灵活等值面提取。在FlexiCubes项目页面上探索更多结果。

原文链接:更好的 3D 网格,从重建到生成式 AI (mvrlink.com)

相关推荐
中杯可乐多加冰11 分钟前
逻辑控制案例详解|基于smardaten实现OA一体化办公系统逻辑交互
人工智能·深度学习·低代码·oa办公·无代码·一体化平台·逻辑控制
IT_陈寒36 分钟前
Redis实战:5个高频应用场景下的性能优化技巧,让你的QPS提升50%
前端·人工智能·后端
龙智DevSecOps解决方案1 小时前
Perforce《2025游戏技术现状报告》Part 1:游戏引擎技术的广泛影响以及生成式AI的成熟之路
人工智能·unity·游戏引擎·游戏开发·perforce
大佬,救命!!!1 小时前
更换适配python版本直接进行机器学习深度学习等相关环境配置(非仿真环境)
人工智能·python·深度学习·机器学习·学习笔记·详细配置
星空的资源小屋1 小时前
VNote:程序员必备Markdown笔记神器
javascript·人工智能·笔记·django
梵得儿SHI1 小时前
(第七篇)Spring AI 基础入门总结:四层技术栈全景图 + 三大坑根治方案 + RAG 进阶预告
java·人工智能·spring·springai的四大核心能力·向量维度·prompt模板化·向量存储检索
亚马逊云开发者1 小时前
Amazon Bedrock助力飞书深诺电商广告分类
人工智能
2301_823438021 小时前
解析论文《复杂海上救援环境中无人机群的双阶段协作路径规划与任务分配》
人工智能·算法·无人机
无心水1 小时前
【Python实战进阶】4、Python字典与集合深度解析
开发语言·人工智能·python·python字典·python集合·python实战进阶·python工业化实战进阶
励志成为糕手2 小时前
循环神经网络(RNN):时序数据的深度学习模型
人工智能·rnn·深度学习·gru·lstm