中英双语对话大语言模型:ChatGLM-6B

介绍

ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。 ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答

为了方便下游开发者针对自己的应用场景定制模型,我们同时实现了基于 P-Tuning v2 的高效参数微调方法 (使用指南) ,INT4 量化级别下最低只需 7GB 显存即可启动微调。

硬件需求

量化等级 最低 GPU 显存(推理) 最低 GPU 显存(高效参数微调)
FP16(无量化) 13 GB 14 GB
INT8 8 GB 9 GB
INT4 6 GB 7 GB

CPU 部署

如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存)

bash 复制代码
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()

如果你的内存不足,可以直接加载量化后的模型:

bash 复制代码
# INT8 量化的模型将"THUDM/chatglm-6b-int4"改为"THUDM/chatglm-6b-int8"
model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4",trust_remote_code=True).float()

截图

地址

ChatGLM-6B

相关推荐
仙人掌_lz44 分钟前
Qwen-3 微调实战:用 Python 和 Unsloth 打造专属 AI 模型
人工智能·python·ai·lora·llm·微调·qwen3
美林数据Tempodata2 小时前
大模型驱动数据分析革新:美林数据智能问数解决方案破局传统 BI 痛点
数据库·人工智能·数据分析·大模型·智能问数
硅谷秋水2 小时前
NORA:一个用于具身任务的小型开源通才视觉-语言-动作模型
人工智能·深度学习·机器学习·计算机视觉·语言模型·机器人
正儿八经的数字经2 小时前
人工智能100问☞第46问:AI是如何“学习”的?
人工智能·学习
飞哥数智坊2 小时前
别卷提示词了!像带新人一样“带”AI,产出效率翻倍
人工智能
扫地的小何尚3 小时前
全新NVIDIA Llama Nemotron Nano视觉语言模型在OCR基准测试中准确率夺冠
c++·人工智能·语言模型·机器人·ocr·llama·gpu
m0_575470883 小时前
n8n实战:自动化生成AI日报并发布
人工智能·ai·自动化·ai自动写作
时空无限3 小时前
使用 ollama 在 mac 本地部署一个 qwen3:8b 模型
人工智能·语言模型
平行云4 小时前
LarkXR 赋能AI x XR数字供应链:引领智能设计、数字孪生与零售新未来
人工智能·webrtc·xr·云渲染·虚幻引擎·云展厅