神经网络基础-神经网络补充概念-53-将batch norm拟合进神经网络

代码实现

python 复制代码
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, BatchNormalization, Activation
from tensorflow.keras.optimizers import SGD

# 生成随机数据
np.random.seed(0)
X = np.random.rand(100, 10)
y = np.random.randint(2, size=(100, 1))

# 构建神经网络模型
model = Sequential()

# 添加输入层
model.add(Dense(32, input_dim=10))
model.add(BatchNormalization())
model.add(Activation('relu'))

# 添加隐含层
model.add(Dense(64))
model.add(BatchNormalization())
model.add(Activation('relu'))

# 添加输出层
model.add(Dense(1, activation='sigmoid'))

# 编译模型
model.compile(optimizer=SGD(lr=0.01), loss='binary_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(X, y, epochs=50, batch_size=32)

为什么BN会生效

梯度消失问题的缓解:在深度神经网络中,梯度消失是一个常见的问题,特别是在深层网络中。批归一化通过在每个批次内对输入进行标准化,使得激活函数的输入分布更稳定,从而减轻了梯度消失问题,使得梯度更容易传播,促进了训练过程的稳定性和效率。

加速收敛:由于批归一化在每个批次内对输入进行了标准化,网络的参数可以更快地收敛到合适的范围,从而加速了训练的收敛速度。这意味着在相同迭代次数下,批归一化的网络可以取得更好的效果。

模型稳定性:批归一化有助于减少模型在训练过程中的震荡,使得网络更加稳定。它通过对每个批次的统计信息进行标准化,减小了参数的更新幅度,从而减少了训练过程中的不稳定性。

泛化能力提升:批归一化对输入数据的标准化可以使模型对不同尺度、分布的数据更具有鲁棒性,从而提高了模型的泛化能力,使其在测试数据上表现更好。

正则化效果:批归一化在每个批次内引入了一些噪声,类似于 dropout,有助于模型的正则化,减少过拟合问题。

相关推荐
工藤学编程9 分钟前
零基础学AI大模型之LangChain智能体之initialize_agent开发实战
人工智能·langchain
king王一帅1 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技4 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102165 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧5 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)5 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
没学上了6 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好6 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
智驱力人工智能6 小时前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算
AI产品备案6 小时前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记