神经网络基础-神经网络补充概念-53-将batch norm拟合进神经网络

代码实现

python 复制代码
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, BatchNormalization, Activation
from tensorflow.keras.optimizers import SGD

# 生成随机数据
np.random.seed(0)
X = np.random.rand(100, 10)
y = np.random.randint(2, size=(100, 1))

# 构建神经网络模型
model = Sequential()

# 添加输入层
model.add(Dense(32, input_dim=10))
model.add(BatchNormalization())
model.add(Activation('relu'))

# 添加隐含层
model.add(Dense(64))
model.add(BatchNormalization())
model.add(Activation('relu'))

# 添加输出层
model.add(Dense(1, activation='sigmoid'))

# 编译模型
model.compile(optimizer=SGD(lr=0.01), loss='binary_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(X, y, epochs=50, batch_size=32)

为什么BN会生效

梯度消失问题的缓解:在深度神经网络中,梯度消失是一个常见的问题,特别是在深层网络中。批归一化通过在每个批次内对输入进行标准化,使得激活函数的输入分布更稳定,从而减轻了梯度消失问题,使得梯度更容易传播,促进了训练过程的稳定性和效率。

加速收敛:由于批归一化在每个批次内对输入进行了标准化,网络的参数可以更快地收敛到合适的范围,从而加速了训练的收敛速度。这意味着在相同迭代次数下,批归一化的网络可以取得更好的效果。

模型稳定性:批归一化有助于减少模型在训练过程中的震荡,使得网络更加稳定。它通过对每个批次的统计信息进行标准化,减小了参数的更新幅度,从而减少了训练过程中的不稳定性。

泛化能力提升:批归一化对输入数据的标准化可以使模型对不同尺度、分布的数据更具有鲁棒性,从而提高了模型的泛化能力,使其在测试数据上表现更好。

正则化效果:批归一化在每个批次内引入了一些噪声,类似于 dropout,有助于模型的正则化,减少过拟合问题。

相关推荐
算家计算2 分钟前
Wan2.2-Animate-14B 使用指南:从图片到动画的完整教程
人工智能·开源·aigc
西柚小萌新3 分钟前
【深入浅出PyTorch】--4.PyTorch基础实战
人工智能·pytorch·python
渡我白衣7 分钟前
深度学习入门(一)——从神经元到损失函数,一步步理解前向传播(下)
人工智能·深度学习·神经网络
算家计算34 分钟前
快手新模型登顶开源编程模型榜首!超越Qwen3-Coder等模型
人工智能·开源·资讯
ManageEngineITSM40 分钟前
IT 服务自动化的时代:让效率与体验共进
运维·数据库·人工智能·自动化·itsm·工单系统
总有刁民想爱朕ha1 小时前
AI大模型学习(17)python-flask AI大模型和图片处理工具的从一张图到多平台适配的简单方法
人工智能·python·学习·电商图片处理
302AI1 小时前
体验升级而非颠覆,API成本直降75%:DeepSeek-V3.2-Exp评测
人工智能·llm·deepseek
新智元1 小时前
老黄押宝「美版 DeepSeek」!谷歌天才叛将创业,一夜吸金 20 亿美元
人工智能·openai
新智元1 小时前
刚刚,全球首个 GB300 巨兽救场!一年烧光 70 亿,OpenAI 内斗 GPU 惨烈
人工智能·openai
小虎鲸001 小时前
PyTorch的安装与使用
人工智能·pytorch·python·深度学习