使用sklearn函数对模型进行交叉验证

使用sklearn函数对模型进行交叉验证

交叉验证用来做什么

交叉验证(Cross-Validatio),是用于在驯良过程中对训练模型的性能和参数进行评估选择的技术。

它的意义在于能够充分利用优先的数据集,减少数据分布不均匀以及随机性带来的模型评估误差。

交叉验证的作用就是将数据集分割成多个自己进行多次训练,每次训练的训练集与测试机不完全相同。

sklearn 中的函数

python 复制代码
from sklearn.model_selection import train_test_split, StratifiedKFold, KFold
skf = KFold(n_splits=10, random_state=233, shuffle=True)

n_splits:int, default=5

表示,要分割为多少个K子集

shuffle:bool, default=False

是否打乱数据

random_state:int or RandomState instance, default=None

随机状态,需要配合shuffle参数使用

参考文章 https://blog.csdn.net/weixin_43803950/article/details/120894868

python 复制代码
# 如果有额外的标签,train_path 标签数据,如果标签是跟随train_path,第二个可不填入
skf.split(train_path, train_path)
python 复制代码
   for fold_idx, (train_idx, val_idx) in enumerate(skf.split(train_path, train_path)):
        train_loader = torch.utils.data.DataLoader(
            XunFeiDataset(np.array(train_path)[train_idx],
                          A.Compose([
                              A.RandomRotate90(),
                              A.RandomCrop(120, 120),
                              A.HorizontalFlip(p=0.5),
                              A.RandomContrast(p=0.5),
                              A.RandomBrightnessContrast(p=0.5),
                          ])
                          ), batch_size=8, shuffle=True, num_workers=0, pin_memory=False
        )

        val_loader = torch.utils.data.DataLoader(
            XunFeiDataset(np.array(train_path)[val_idx],
                          A.Compose([
                              A.RandomCrop(120, 120),
                          ])
                          ), batch_size=8, shuffle=False, num_workers=0, pin_memory=False
        )

        for epoch_item in range(30):

            # adjust_learning_rate(optimizer, epoch_item)

            train_loss = train(train_loader, model, criterion, optimizer)

            val_acc = validate(val_loader, model, criterion)

            train_acc = validate(train_loader, model, criterion)

            print(train_loss, train_acc, val_acc)
相关推荐
知乎的哥廷根数学学派8 小时前
面向可信机械故障诊断的自适应置信度惩罚深度校准算法(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习·矩阵
数字化转型20258 小时前
企业数字化架构集成能力建设
大数据·程序人生·机器学习
强盛小灵通专卖员8 小时前
基于深度学习的山体滑坡检测科研辅导:从论文实验到系统落地的完整思路
人工智能·深度学习·sci·小论文·山体滑坡
Hcoco_me9 小时前
大模型面试题61:Flash Attention中online softmax(在线softmax)的实现方式
人工智能·深度学习·自然语言处理·transformer·vllm
哥布林学者9 小时前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (七)双向 RNN 与深层 RNN
深度学习·ai
极海拾贝9 小时前
GeoScene解决方案中心正式上线!
大数据·人工智能·深度学习·arcgis·信息可视化·语言模型·解决方案
知乎的哥廷根数学学派10 小时前
基于生成对抗U-Net混合架构的隧道衬砌缺陷地质雷达数据智能反演与成像方法(以模拟信号为例,Pytorch)
开发语言·人工智能·pytorch·python·深度学习·机器学习
知乎的哥廷根数学学派10 小时前
基于自适应多尺度小波核编码与注意力增强的脉冲神经网络机械故障诊断(Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习
童话名剑11 小时前
锚框 与 完整YOLO示例(吴恩达深度学习笔记)
笔记·深度学习·yolo··anchor box