使用sklearn函数对模型进行交叉验证

使用sklearn函数对模型进行交叉验证

交叉验证用来做什么

交叉验证(Cross-Validatio),是用于在驯良过程中对训练模型的性能和参数进行评估选择的技术。

它的意义在于能够充分利用优先的数据集,减少数据分布不均匀以及随机性带来的模型评估误差。

交叉验证的作用就是将数据集分割成多个自己进行多次训练,每次训练的训练集与测试机不完全相同。

sklearn 中的函数

python 复制代码
from sklearn.model_selection import train_test_split, StratifiedKFold, KFold
skf = KFold(n_splits=10, random_state=233, shuffle=True)

n_splits:int, default=5

表示,要分割为多少个K子集

shuffle:bool, default=False

是否打乱数据

random_state:int or RandomState instance, default=None

随机状态,需要配合shuffle参数使用

参考文章 https://blog.csdn.net/weixin_43803950/article/details/120894868

python 复制代码
# 如果有额外的标签,train_path 标签数据,如果标签是跟随train_path,第二个可不填入
skf.split(train_path, train_path)
python 复制代码
   for fold_idx, (train_idx, val_idx) in enumerate(skf.split(train_path, train_path)):
        train_loader = torch.utils.data.DataLoader(
            XunFeiDataset(np.array(train_path)[train_idx],
                          A.Compose([
                              A.RandomRotate90(),
                              A.RandomCrop(120, 120),
                              A.HorizontalFlip(p=0.5),
                              A.RandomContrast(p=0.5),
                              A.RandomBrightnessContrast(p=0.5),
                          ])
                          ), batch_size=8, shuffle=True, num_workers=0, pin_memory=False
        )

        val_loader = torch.utils.data.DataLoader(
            XunFeiDataset(np.array(train_path)[val_idx],
                          A.Compose([
                              A.RandomCrop(120, 120),
                          ])
                          ), batch_size=8, shuffle=False, num_workers=0, pin_memory=False
        )

        for epoch_item in range(30):

            # adjust_learning_rate(optimizer, epoch_item)

            train_loss = train(train_loader, model, criterion, optimizer)

            val_acc = validate(val_loader, model, criterion)

            train_acc = validate(train_loader, model, criterion)

            print(train_loss, train_acc, val_acc)
相关推荐
运器1232 小时前
【一起来学AI大模型】支持向量机(SVM):核心算法深度解析
大数据·人工智能·算法·机器学习·支持向量机·ai·ai编程
我爱一条柴ya4 小时前
【AI大模型】神经网络反向传播:核心原理与完整实现
人工智能·深度学习·神经网络·ai·ai编程
慕婉03074 小时前
深度学习概述
人工智能·深度学习
19894 小时前
【零基础学AI】第30讲:生成对抗网络(GAN)实战 - 手写数字生成
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·近邻算法
神经星星4 小时前
新加坡国立大学基于多维度EHR数据实现细粒度患者队列建模,住院时间预测准确率提升16.3%
人工智能·深度学习·机器学习
TY-20254 小时前
深度学习——神经网络1
人工智能·深度学习·神经网络
沐尘而生4 小时前
【AI智能体】智能音视频-硬件设备基于 WebSocket 实现语音交互
大数据·人工智能·websocket·机器学习·ai作画·音视频·娱乐
巴伦是只猫4 小时前
【机器学习笔记Ⅰ】3 代价函数
人工智能·笔记·机器学习
cver1235 小时前
CSGO 训练数据集介绍-2,427 张图片 AI 游戏助手 游戏数据分析
人工智能·深度学习·yolo·目标检测·游戏·计算机视觉
FreeBuf_5 小时前
新型BERT勒索软件肆虐:多线程攻击同时针对Windows、Linux及ESXi系统
人工智能·深度学习·bert