Progressive-Hint Prompting Improves Reasoning in Large Language Models

本文是LLM系列的文章,针对《Progressive-Hint Prompting Improves Reasoning

in Large Language Models》的翻译。

渐进提示改进了大型语言模型中的推理

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 渐进提示Prompting](#3 渐进提示Prompting)
  • [4 实验](#4 实验)
  • [5 结论](#5 结论)
  • [6 实现细节](#6 实现细节)
  • [7 不足与未来工作](#7 不足与未来工作)
  • [8 广泛的影响](#8 广泛的影响)
  • [9 具有不同提示的模型响应](#9 具有不同提示的模型响应)

摘要

大型语言模型(LLM)在推理任务中的性能在很大程度上取决于提示设计,思想链(CoT)和自洽性是增强这种能力的关键方法。然而,这些方法并没有充分利用LLM生成的答案来指导后续响应。本文提出了一种新的提示方法,称为渐进提示(PHP),通过使用以前生成的答案作为提示,逐步引导用户找到正确的答案,实现用户和LLM之间的自动多次交互。PHP与CoT和自一致性正交,因此可以轻松地与最先进的技术相结合,以进一步提高性能。我们在七个基准上进行了广泛而全面的实验。结果表明,PHP在保持高效的同时显著提高了准确性。例如,使用text-davinci-003,我们观察到与复杂CoT相比,贪婪解码的GSM8K改进了4.2%,自一致性的样本路径减少了46.17%。通过GPT-4和PHP,我们在SVAMP上实现了最先进的性能(89.1%→ 91.9%)、GSM8K(92%→ 95.5%)、AQuA(76.4%→ 79.9%)和数学(50.3%)→ 53.9%)。

1 引言

2 相关工作

3 渐进提示Prompting

4 实验

5 结论

6 实现细节

7 不足与未来工作

8 广泛的影响

9 具有不同提示的模型响应

具有不同提示的模型响应。当呈现提示100时,该模型准确地解决了该问题。相反,如果提供的提示与正确答案偏离太远,则模型可能会被误导。例如,当提示为0时,模型计算出未使用的胡萝卜量为80磅,输出的答案为0。

相关推荐
大模型任我行5 小时前
人大:熵引导的LLM有限数据训练
人工智能·语言模型·自然语言处理·论文笔记
独自破碎E5 小时前
解释一下RAG中的Rerank
gpt·语言模型
理心炼丹11 小时前
ubutnu系统关机卡 90s 的原因分析
ubuntu·语言模型·rime·ubuntu 输入法·sougou·雾凇拼音·关机卡90s
大模型任我行11 小时前
Meta:LLM无监督提升科研能力
人工智能·语言模型·自然语言处理·论文笔记
KG_LLM图谱增强大模型12 小时前
NEURO-GUARD:知识引导推理驱动的革命性可解释医学影像多模态大模型诊断框架
语言模型·大模型·知识图谱
小马过河R13 小时前
混元世界模型1.5架构原理初探
人工智能·语言模型·架构·nlp
金井PRATHAMA14 小时前
格雷马斯语义方阵对人工智能自然语言处理深层语义分析的影响与启示研究
人工智能·自然语言处理
中國龍在廣州15 小时前
谈谈2025年人工智能现状及发展趋势分析
人工智能·深度学习·算法·自然语言处理·chatgpt·机器人·机器人学习
vibag15 小时前
Model大模型接口
python·语言模型·langchain·大模型
vibag15 小时前
提示模板PromptTemplate
python·语言模型·langchain·大模型