Progressive-Hint Prompting Improves Reasoning in Large Language Models

本文是LLM系列的文章,针对《Progressive-Hint Prompting Improves Reasoning

in Large Language Models》的翻译。

渐进提示改进了大型语言模型中的推理

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 渐进提示Prompting](#3 渐进提示Prompting)
  • [4 实验](#4 实验)
  • [5 结论](#5 结论)
  • [6 实现细节](#6 实现细节)
  • [7 不足与未来工作](#7 不足与未来工作)
  • [8 广泛的影响](#8 广泛的影响)
  • [9 具有不同提示的模型响应](#9 具有不同提示的模型响应)

摘要

大型语言模型(LLM)在推理任务中的性能在很大程度上取决于提示设计,思想链(CoT)和自洽性是增强这种能力的关键方法。然而,这些方法并没有充分利用LLM生成的答案来指导后续响应。本文提出了一种新的提示方法,称为渐进提示(PHP),通过使用以前生成的答案作为提示,逐步引导用户找到正确的答案,实现用户和LLM之间的自动多次交互。PHP与CoT和自一致性正交,因此可以轻松地与最先进的技术相结合,以进一步提高性能。我们在七个基准上进行了广泛而全面的实验。结果表明,PHP在保持高效的同时显著提高了准确性。例如,使用text-davinci-003,我们观察到与复杂CoT相比,贪婪解码的GSM8K改进了4.2%,自一致性的样本路径减少了46.17%。通过GPT-4和PHP,我们在SVAMP上实现了最先进的性能(89.1%→ 91.9%)、GSM8K(92%→ 95.5%)、AQuA(76.4%→ 79.9%)和数学(50.3%)→ 53.9%)。

1 引言

2 相关工作

3 渐进提示Prompting

4 实验

5 结论

6 实现细节

7 不足与未来工作

8 广泛的影响

9 具有不同提示的模型响应

具有不同提示的模型响应。当呈现提示100时,该模型准确地解决了该问题。相反,如果提供的提示与正确答案偏离太远,则模型可能会被误导。例如,当提示为0时,模型计算出未使用的胡萝卜量为80磅,输出的答案为0。

相关推荐
天才少女爱迪生2 小时前
【算法设计】GLM-4.5V模型架构和算法设计详解
python·算法·语言模型
~~李木子~~2 小时前
法律RAG智能问答系统设计与实现
自然语言处理
沃丰科技3 小时前
以全栈AI能力重塑智能客服服务效能
人工智能·机器学习·自然语言处理
hans汉斯4 小时前
【计算机科学与应用】预训练语言模型在日文文本难易度自动分类中的应用
人工智能·深度学习·机器学习·语言模型·自然语言处理·机器人·匿名
亚里随笔4 小时前
推理语言模型训练策略的协同作用:预训练、中间训练与强化学习的交互机制
人工智能·语言模型·自然语言处理·llm·rl·agentic
海森大数据4 小时前
超越简单问答:SUPERChem基准揭示大语言模型化学深度推理的机遇与挑战
人工智能·语言模型·自然语言处理
墨染星辰云水间4 小时前
Extracting Latent Steering Vectors from Pretrained Language Models
人工智能·语言模型·自然语言处理
Francek Chen5 小时前
【自然语言处理】应用01:情感分析及数据集
人工智能·pytorch·深度学习·自然语言处理
前进的李工5 小时前
AI安全威胁:对抗样本到数据隐私全解析(13种安全威胁及防护)
网络·人工智能·安全·语言模型·网络攻击模型
阿杰学AI5 小时前
AI核心知识47——大语言模型之Data Cleaning(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·数据清洗·模型训练·data cleaning