Progressive-Hint Prompting Improves Reasoning in Large Language Models

本文是LLM系列的文章,针对《Progressive-Hint Prompting Improves Reasoning

in Large Language Models》的翻译。

渐进提示改进了大型语言模型中的推理

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 渐进提示Prompting](#3 渐进提示Prompting)
  • [4 实验](#4 实验)
  • [5 结论](#5 结论)
  • [6 实现细节](#6 实现细节)
  • [7 不足与未来工作](#7 不足与未来工作)
  • [8 广泛的影响](#8 广泛的影响)
  • [9 具有不同提示的模型响应](#9 具有不同提示的模型响应)

摘要

大型语言模型(LLM)在推理任务中的性能在很大程度上取决于提示设计,思想链(CoT)和自洽性是增强这种能力的关键方法。然而,这些方法并没有充分利用LLM生成的答案来指导后续响应。本文提出了一种新的提示方法,称为渐进提示(PHP),通过使用以前生成的答案作为提示,逐步引导用户找到正确的答案,实现用户和LLM之间的自动多次交互。PHP与CoT和自一致性正交,因此可以轻松地与最先进的技术相结合,以进一步提高性能。我们在七个基准上进行了广泛而全面的实验。结果表明,PHP在保持高效的同时显著提高了准确性。例如,使用text-davinci-003,我们观察到与复杂CoT相比,贪婪解码的GSM8K改进了4.2%,自一致性的样本路径减少了46.17%。通过GPT-4和PHP,我们在SVAMP上实现了最先进的性能(89.1%→ 91.9%)、GSM8K(92%→ 95.5%)、AQuA(76.4%→ 79.9%)和数学(50.3%)→ 53.9%)。

1 引言

2 相关工作

3 渐进提示Prompting

4 实验

5 结论

6 实现细节

7 不足与未来工作

8 广泛的影响

9 具有不同提示的模型响应

具有不同提示的模型响应。当呈现提示100时,该模型准确地解决了该问题。相反,如果提供的提示与正确答案偏离太远,则模型可能会被误导。例如,当提示为0时,模型计算出未使用的胡萝卜量为80磅,输出的答案为0。

相关推荐
HyperAI超神经5 小时前
【TVM 教程】使用 Tensorize 来利用硬件内联函数
人工智能·深度学习·自然语言处理·tvm·计算机技术·编程开发·编译框架
Shy9604187 小时前
Doc2Vec句子向量
python·语言模型
学术搬运工10 小时前
【珠海科技学院主办,暨南大学协办 | IEEE出版 | EI检索稳定 】2024年健康大数据与智能医疗国际会议(ICHIH 2024)
大数据·图像处理·人工智能·科技·机器学习·自然语言处理
SEVEN-YEARS13 小时前
BERT配置详解1:构建强大的自然语言处理模型
人工智能·自然语言处理·bert
智匠MindCraft Al17 小时前
GPT o1 模型使用及API调用
人工智能·gpt·ai·语言模型·chatgpt
正在走向自律18 小时前
AI写作(二)NLP:开启自然语言处理的奇妙之旅(2/10)
人工智能·自然语言处理·ai写作
沉下心来学鲁班21 小时前
欺诈文本分类检测(十八):基于llama.cpp+CPU推理
人工智能·语言模型·分类·cpu·llama.cpp
m0_523674211 天前
技术前沿:从强化学习到Prompt Engineering,业务流程管理的创新之路
人工智能·深度学习·目标检测·机器学习·语言模型·自然语言处理·数据挖掘
小言从不摸鱼1 天前
【AI大模型】ELMo模型介绍:深度理解语言模型的嵌入艺术
人工智能·深度学习·语言模型·自然语言处理·transformer
衬衫chenshan1 天前
【论文阅读】(Security) Assertions by Large Language Models
论文阅读·人工智能·语言模型