Progressive-Hint Prompting Improves Reasoning in Large Language Models

本文是LLM系列的文章,针对《Progressive-Hint Prompting Improves Reasoning

in Large Language Models》的翻译。

渐进提示改进了大型语言模型中的推理

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 渐进提示Prompting](#3 渐进提示Prompting)
  • [4 实验](#4 实验)
  • [5 结论](#5 结论)
  • [6 实现细节](#6 实现细节)
  • [7 不足与未来工作](#7 不足与未来工作)
  • [8 广泛的影响](#8 广泛的影响)
  • [9 具有不同提示的模型响应](#9 具有不同提示的模型响应)

摘要

大型语言模型(LLM)在推理任务中的性能在很大程度上取决于提示设计,思想链(CoT)和自洽性是增强这种能力的关键方法。然而,这些方法并没有充分利用LLM生成的答案来指导后续响应。本文提出了一种新的提示方法,称为渐进提示(PHP),通过使用以前生成的答案作为提示,逐步引导用户找到正确的答案,实现用户和LLM之间的自动多次交互。PHP与CoT和自一致性正交,因此可以轻松地与最先进的技术相结合,以进一步提高性能。我们在七个基准上进行了广泛而全面的实验。结果表明,PHP在保持高效的同时显著提高了准确性。例如,使用text-davinci-003,我们观察到与复杂CoT相比,贪婪解码的GSM8K改进了4.2%,自一致性的样本路径减少了46.17%。通过GPT-4和PHP,我们在SVAMP上实现了最先进的性能(89.1%→ 91.9%)、GSM8K(92%→ 95.5%)、AQuA(76.4%→ 79.9%)和数学(50.3%)→ 53.9%)。

1 引言

2 相关工作

3 渐进提示Prompting

4 实验

5 结论

6 实现细节

7 不足与未来工作

8 广泛的影响

9 具有不同提示的模型响应

具有不同提示的模型响应。当呈现提示100时,该模型准确地解决了该问题。相反,如果提供的提示与正确答案偏离太远,则模型可能会被误导。例如,当提示为0时,模型计算出未使用的胡萝卜量为80磅,输出的答案为0。

相关推荐
天涯海风3 小时前
检索增强生成(RAG) 缓存增强生成(CAG) 生成中检索(RICHES) 知识库增强语言模型(KBLAM)
人工智能·缓存·语言模型
AwhiteV5 小时前
利用图数据库高效解决 Text2sql 任务中表结构复杂时占用过多大模型上下文的问题
数据库·人工智能·自然语言处理·oracle·大模型·text2sql
runfarther11 小时前
搭建LLaMA-Factory环境
linux·运维·服务器·python·自然语言处理·ai编程·llama-factory
铁锚11 小时前
在MAC环境中安装unsloth
人工智能·python·macos·语言模型
金井PRATHAMA13 小时前
意象框架:连接感知与认知的统一信息结构分析——基于上古汉语同源词意义系统的词源学与认知语言学探索
人工智能·自然语言处理
It_张18 小时前
LLM(大语言模型)的工作原理 图文讲解
人工智能·语言模型·自然语言处理
runfarther19 小时前
uv与conda的区别及选择指南
语言模型·conda·ai编程·uv
聚客AI20 小时前
深度拆解AI大模型从训练框架、推理优化到市场趋势与基础设施挑战
图像处理·人工智能·pytorch·深度学习·机器学习·自然语言处理·transformer
搏博1 天前
基于Python3.10.6与jieba库的中文分词模型接口在Windows Server 2022上的实现与部署教程
windows·python·自然语言处理·flask·中文分词
杨过过儿1 天前
【Task01】:简介与环境配置(第一章1、2节)
人工智能·自然语言处理