深度学习1:通过模型评价指标优化训练

P(Positive)表示预测为正样本,N(negative)表示预测为负样本,T(True)表示预测正确,F(False)表示预测错误。

TP:正样本预测正确的数量(正确检测)

FP:负样本预测正确数量(误检测)

TN:负样本预测错误数量

FN:正样本预测错误的数量(漏检测)

1.准确率:正确样本占总样本的比例

Accuracy=(TP+TN)/(TP+TN+FP+FN)

2.精确率:正样本预测正确占正样本的比例

precision=(TP)/(TP+FP)

精确度低,召回率高的解决办法:

模型把大量背景(负样本)错判成目标(正样本 )。

主要原因不外乎数据本身有问题:1、图片上目标没有标全,有大量没标注的 ,这样会导致模型其实学到了目标物特征,但是真值是负样本(没有标注);2、图片上目标标的太仔细,把非常小像素的目标(特征跟背景相差不大)都标了,这样也会导致模型错把背景当成目标 。

3.召回率:正样本预测正确占实际正样本的比例

R=(TP)/(TP+FN)

为了找到所有正样本。

召回率低,精确度高的解决办法:

对错误的标注样本进行修正。

4. 平均精度AP

AP 就是Precision-recall 曲线下面的面积。

5.map

当我们把所有类别的AP都计算出来后,再对它们求平均值,即可得到mAP。

相关推荐
码上掘金2 分钟前
基于YOLO和大语言模型的PCB智能缺陷检测系统
人工智能·yolo·语言模型
裤裤兔36 分钟前
卷积神经网络中的自适应池化
人工智能·神经网络·cnn·自适应池化
TracyCoder1231 小时前
词嵌入来龙去脉:One-hot、Word2Vec、GloVe、ELMo
人工智能·自然语言处理·word2vec
V1ncent Chen1 小时前
机器是如何变“智能“的?:机器学习
人工智能·机器学习
ccLianLian1 小时前
CLIP Surgery
人工智能·计算机视觉
秋刀鱼 ..1 小时前
2026年新一代智能通信与信号处理研讨会
人工智能·神经网络·物联网·计算机网络·人机交互·信号处理
Buxxxxxx1 小时前
DAY 38 MLP神经网络的训练
深度学习·神经网络·机器学习
likeshop 好像科技1 小时前
新手学习AI智能体Agent逻辑设计的指引
人工智能·学习·开源·github
许泽宇的技术分享2 小时前
当 AI Agent 遇上可观测性:AgentOpenTelemetry 让你的智能体不再“黑盒“
人工智能·可观测性·opentelemetry·agentframework
加载中3612 小时前
LLM基础知识,langchainV1.0讲解(一)
人工智能·langchain