深度学习1:通过模型评价指标优化训练

P(Positive)表示预测为正样本,N(negative)表示预测为负样本,T(True)表示预测正确,F(False)表示预测错误。

TP:正样本预测正确的数量(正确检测)

FP:负样本预测正确数量(误检测)

TN:负样本预测错误数量

FN:正样本预测错误的数量(漏检测)

1.准确率:正确样本占总样本的比例

Accuracy=(TP+TN)/(TP+TN+FP+FN)

2.精确率:正样本预测正确占正样本的比例

precision=(TP)/(TP+FP)

精确度低,召回率高的解决办法:

模型把大量背景(负样本)错判成目标(正样本 )。

主要原因不外乎数据本身有问题:1、图片上目标没有标全,有大量没标注的 ,这样会导致模型其实学到了目标物特征,但是真值是负样本(没有标注);2、图片上目标标的太仔细,把非常小像素的目标(特征跟背景相差不大)都标了,这样也会导致模型错把背景当成目标 。

3.召回率:正样本预测正确占实际正样本的比例

R=(TP)/(TP+FN)

为了找到所有正样本。

召回率低,精确度高的解决办法:

对错误的标注样本进行修正。

4. 平均精度AP

AP 就是Precision-recall 曲线下面的面积。

5.map

当我们把所有类别的AP都计算出来后,再对它们求平均值,即可得到mAP。

相关推荐
人工智能培训5 分钟前
10分钟了解向量数据库(3)
人工智能·大模型·知识图谱·强化学习·智能体搭建
华清远见成都中心13 分钟前
人工智能要学习的课程有哪些?
人工智能·学习
普通网友28 分钟前
Bard 的模型压缩技术:在保证性能的前提下如何实现轻量化部署
人工智能·机器学习·bard
白帽子黑客罗哥38 分钟前
不同就业方向(如AI、网络安全、前端开发)的具体学习路径和技能要求是什么?
人工智能·学习·web安全
捕风捉你1 小时前
【AI转行04】特征工程:治疗 AI 的“学不会”和“想太多”
人工智能·深度学习·机器学习
何贤1 小时前
2026 年程序员自救指南
人工智能·程序员·掘金技术征文
AKAMAI1 小时前
分布式边缘推理正在改变一切
人工智能·分布式·云计算
极新1 小时前
智面玄赏联合创始人李男:人工智能赋能招聘行业——从效率革新到平台经济重构|2025极新AIGC峰会演讲实录
人工智能·百度
乾元1 小时前
ISP 级别的异常洪泛检测与防护——大流量事件的 AI 自动识别与响应工程
运维·网络·人工智能·安全·web安全·架构
机器之心1 小时前
多模态推理新范式!DiffThinker:用扩散模型「画」出推理和答案
人工智能·openai