深度学习1:通过模型评价指标优化训练

P(Positive)表示预测为正样本,N(negative)表示预测为负样本,T(True)表示预测正确,F(False)表示预测错误。

TP:正样本预测正确的数量(正确检测)

FP:负样本预测正确数量(误检测)

TN:负样本预测错误数量

FN:正样本预测错误的数量(漏检测)

1.准确率:正确样本占总样本的比例

Accuracy=(TP+TN)/(TP+TN+FP+FN)

2.精确率:正样本预测正确占正样本的比例

precision=(TP)/(TP+FP)

精确度低,召回率高的解决办法:

模型把大量背景(负样本)错判成目标(正样本 )。

主要原因不外乎数据本身有问题:1、图片上目标没有标全,有大量没标注的 ,这样会导致模型其实学到了目标物特征,但是真值是负样本(没有标注);2、图片上目标标的太仔细,把非常小像素的目标(特征跟背景相差不大)都标了,这样也会导致模型错把背景当成目标 。

3.召回率:正样本预测正确占实际正样本的比例

R=(TP)/(TP+FN)

为了找到所有正样本。

召回率低,精确度高的解决办法:

对错误的标注样本进行修正。

4. 平均精度AP

AP 就是Precision-recall 曲线下面的面积。

5.map

当我们把所有类别的AP都计算出来后,再对它们求平均值,即可得到mAP。

相关推荐
java1234_小锋1 分钟前
Transformer 大语言模型(LLM)基石 - Transformer架构介绍
深度学习·语言模型·llm·transformer
飞Link4 分钟前
【网络与 AI 工程的交叉】多模态模型的数据传输特点:视频、音频、文本混合通道
网络·人工智能·音视频
yLDeveloper4 分钟前
一只菜鸟学深度学习的日记:填充 & 步幅 & 下采样
深度学习·dive into deep learning
老蒋新思维16 分钟前
创客匠人峰会实录:知识变现的场景化革命 —— 创始人 IP 如何在垂直领域建立变现壁垒
网络·人工智能·tcp/ip·重构·知识付费·创始人ip·创客匠人
老蒋新思维23 分钟前
创客匠人峰会深度解析:智能体驱动知识变现的数字资产化路径 —— 创始人 IP 的长期增长密码
人工智能·网络协议·tcp/ip·重构·知识付费·创始人ip·创客匠人
为爱停留37 分钟前
Spring AI实现RAG(检索增强生成)详解与实践
人工智能·深度学习·spring
像风没有归宿a1 小时前
2025年人工智能十大技术突破:从AGI到多模态大模型
人工智能
噜~噜~噜~1 小时前
显式与隐式欧拉法(Explicit Euler and Implicit Euler)的个人理解
深度学习·显式欧拉法·隐式欧拉法·动力学系统
深鱼~1 小时前
十分钟在 openEuler 上搭建本地 AI 服务:LocalAI 快速部署教程
人工智能