深度学习1:通过模型评价指标优化训练

P(Positive)表示预测为正样本,N(negative)表示预测为负样本,T(True)表示预测正确,F(False)表示预测错误。

TP:正样本预测正确的数量(正确检测)

FP:负样本预测正确数量(误检测)

TN:负样本预测错误数量

FN:正样本预测错误的数量(漏检测)

1.准确率:正确样本占总样本的比例

Accuracy=(TP+TN)/(TP+TN+FP+FN)

2.精确率:正样本预测正确占正样本的比例

precision=(TP)/(TP+FP)

精确度低,召回率高的解决办法:

模型把大量背景(负样本)错判成目标(正样本 )。

主要原因不外乎数据本身有问题:1、图片上目标没有标全,有大量没标注的 ,这样会导致模型其实学到了目标物特征,但是真值是负样本(没有标注);2、图片上目标标的太仔细,把非常小像素的目标(特征跟背景相差不大)都标了,这样也会导致模型错把背景当成目标 。

3.召回率:正样本预测正确占实际正样本的比例

R=(TP)/(TP+FN)

为了找到所有正样本。

召回率低,精确度高的解决办法:

对错误的标注样本进行修正。

4. 平均精度AP

AP 就是Precision-recall 曲线下面的面积。

5.map

当我们把所有类别的AP都计算出来后,再对它们求平均值,即可得到mAP。

相关推荐
李昊哲小课1 小时前
深度学习进阶教程:用卷积神经网络识别图像
人工智能·深度学习·cnn
AndrewHZ1 小时前
【AI分析进行时】AI 时代软件开发新范式:基于斯坦福CS146S课程分析
人工智能·llm·软件开发·斯坦福·cs146s·能力升级·代码agent
玖日大大1 小时前
Seedream-4.0:新一代生成式 AI 框架的技术深度与实践落地
人工智能
七夜zippoe1 小时前
告别API碎片化与高成本 - 用AI Ping打造下一代智能编程工作流
人工智能·架构·大模型·智能编程·ai ping·模型聚合
Luminbox紫创测控2 小时前
汽车自动驾驶的太阳光模拟应用研究
人工智能·自动驾驶·汽车
吴佳浩7 小时前
大模型量化部署终极指南:让700亿参数的AI跑进你的显卡
人工智能·python·gpu
跨境卫士苏苏8 小时前
亚马逊AI广告革命:告别“猜心”,迎接“共创”时代
大数据·人工智能·算法·亚马逊·防关联
珠海西格电力8 小时前
零碳园区工业厂房光伏一体化(BIPV)基础规划
大数据·运维·人工智能·智慧城市·能源
土星云SaturnCloud9 小时前
不止是替代:从机械风扇的可靠性困局,看服务器散热技术新范式
服务器·网络·人工智能·ai
小马爱打代码9 小时前
Spring AI:搭建自定义 MCP Server:获取 QQ 信息
java·人工智能·spring