pytorch 实现VGG

VGG 全称是Visual Geometry Group,因为是由Oxford的Visual Geometry Group提出的。AlexNet问世之后,很多学者通过改进AlexNet的网络结构来提高自己的准确率,主要有两个方向:小卷积核和多尺度。而VGG的作者们则选择了另外一个方向,即加深网络深度。

卷积网络的输入是224 * 224RGB图像,整个网络的组成是非常格式化的,基本上都用的是3 * 3的卷积核以及 2 * 2max pooling,少部分网络加入了1 * 1的卷积核。因为想要体现出"上下左右中"的概念,3*3的卷积核已经是最小的尺寸了。

python 复制代码
import torch
import torch.nn as nn


# 定义VGG模型
class VGG(nn.Module):
    def __init__(self, num_classes=1000):
        super(VGG, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),

            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),

            nn.Conv2d(128, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),

            nn.Conv2d(256, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),

            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2)
        )
        self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
        self.classifier = nn.Sequential(
            nn.Linear(7 * 7 * 512, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, num_classes)
        )

    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x


# 创建VGG模型实例
model = VGG()
相关推荐
生信大表哥5 小时前
单细胞测序分析(五)降维聚类&数据整合
linux·python·聚类·数信院生信服务器
新知图书5 小时前
FastGPT简介
人工智能·ai agent·智能体·大模型应用开发·大模型应用
seeyoutlb6 小时前
微服务全局日志处理
java·python·微服务
Dev7z6 小时前
基于Matlab卷积神经网络的交通警察手势识别方法研究与实现
人工智能·神经网络·cnn
ada7_6 小时前
LeetCode(python)——148.排序链表
python·算法·leetcode·链表
元拓数智6 小时前
IntaLink:破解数仓建设痛点,重塑高效建设新范式
大数据·数据仓库·人工智能·数据关系·intalink
区块链小八歌7 小时前
从电商收入到链上资产:Liquid Royalty在 Berachain 重塑 RWA 想象力
大数据·人工智能·区块链
沃达德软件7 小时前
大数据反诈平台功能解析
大数据·人工智能
OAoffice7 小时前
智能学习培训考试平台如何驱动未来组织:重塑人才发展格局
人工智能·学习·企业智能学习考试平台·学练考一体化平台