三、Kafka生产者

目录

    • [3.1 生产者消息发送流程](#3.1 生产者消息发送流程)
      • [3.1.1 发送原理](#3.1.1 发送原理)
    • [3.2 异步发送 API](#3.2 异步发送 API)
    • [3.3 同步发送数据](#3.3 同步发送数据)
    • [3.4 生产者分区](#3.4 生产者分区)
      • [3.4.1 kafka分区的好处](#3.4.1 kafka分区的好处)
      • [3.4.2 生产者发送消息的分区策略](#3.4.2 生产者发送消息的分区策略)
      • [3.4.3 自定义分区器](#3.4.3 自定义分区器)
    • [3.5 生产者如何提高吞吐量](#3.5 生产者如何提高吞吐量)
    • [3.6 数据可靠性](#3.6 数据可靠性)

3.1 生产者消息发送流程

3.1.1 发送原理

3.2 异步发送 API

3.3 同步发送数据

3.4 生产者分区

3.4.1 kafka分区的好处

  • 便于合理使用存储资源,每个Partition在一个Broker上存储,可以把海量的数据按照分区切割成一块一块数据存储在多台Broker上。合理控制分区的任务,可以实现负载均衡的效果
  • 提高并行度,生产者可以以分区为单位发送数据;消费者可以以分区为单位进行消费数据。

3.4.2 生产者发送消息的分区策略

3.4.3 自定义分区器

1、需求:

例如我们实现一个分区器实现,发送过来的数据中如果包含 atguigu,就发往 0 号分区,不包含 atguigu,就发往 1 号分区

2、定义类实现 Partitioner 接口,重写 partition()方法。

java 复制代码
public class MyPartitioner implements Partitioner {
    @Override
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {

        // 获取数据 atguigu  hello
        String msgValues = value.toString();

        int partition;

        if (msgValues.contains("atguigu")){
            partition = 0;
        }else {
            partition = 1;
        }

        return partition;
    }

    @Override
    public void close() {

    }

    @Override
    public void configure(Map<String, ?> configs) {

    }
}

3、使用分区器的方法,在生产者的配置中添加分区器参数

java 复制代码
public class CustomProducerCallbackPartitions {

    public static void main(String[] args) throws InterruptedException {

        // 0 配置
        Properties properties = new Properties();

        // 连接集群 bootstrap.servers
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.239.11:9092");

        // 指定对应的key和value的序列化类型 key.serializer
//        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());

        // 关联自定义分区器
        properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, "com.atguigu.kafka.producer.MyPartitioner");

        // 1 创建kafka生产者对象
        // "" hello
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);

        // 2 发送数据
        for (int i = 0; i < 5; i++) {
            kafkaProducer.send(new ProducerRecord<>("first", "atguigu" + i), new Callback() {
                @Override
                public void onCompletion(RecordMetadata metadata, Exception exception) {

                    if (exception == null) {
                        System.out.println("主题: " + metadata.topic() + " 分区: " + metadata.partition());
                    }
                }
            });

            Thread.sleep(2);
        }

        // 3 关闭资源
        kafkaProducer.close();
    }
}

3.5 生产者如何提高吞吐量

  • 分批次发送消息
  • 对生产者消息采用压缩

四个重要参数:

java 复制代码
public class CustomProducerParameters {

    public static void main(String[] args) {

        // 0 配置
        Properties properties = new Properties();

        // 连接kafka集群
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.239.11:9092");

        // 序列化
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

        // 缓冲区大小
        properties.put(ProducerConfig.BUFFER_MEMORY_CONFIG,33554432);

        // 批次大小
        properties.put(ProducerConfig.BATCH_SIZE_CONFIG,16384);

        // linger.ms
        properties.put(ProducerConfig.LINGER_MS_CONFIG, 1);

        // 压缩
        properties.put(ProducerConfig.COMPRESSION_TYPE_CONFIG,"snappy");


        // 1 创建生产者
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);

        // 2 发送数据
        for (int i = 0; i < 50; i++) {
            kafkaProducer.send(new ProducerRecord<>("first","atguigu"+i));
        }

        // 3 关闭资源
        kafkaProducer.close();
    }
}

3.6 数据可靠性

相关推荐
计算机软件程序设计8 小时前
Windows下安装kafka
windows·分布式·kafka
java技术小馆8 小时前
Kafka 消息传递模型
分布式·kafka
HBryce2411 小时前
Kafka&&RocketMQ
分布式·kafka·rocketmq
一个儒雅随和的男子13 小时前
kafka消息中间件的rebalance机制
分布式·kafka
小技工丨14 小时前
Flink SQL 读取 Kafka 数据到 Mysql 实战
sql·flink·kafka
BAStriver1 天前
关于kafka常见的问题小结
分布式·kafka
HappyChan1 天前
kakfa生产者消费者实践
云原生·kafka·go
auspicious航1 天前
Linux系统上安装kafka
linux·运维·kafka
fxrz122 天前
探讨消息队列系统:AWS SQS vs. Apache Kafka
kafka·apache·aws
小小工匠2 天前
Kafka - 高吞吐量的七项核心设计解析
kafka·高吞吐量