Shepherd: A Critic for Language Model Generation

本文是LLM系列的相关文章,针对《Shepherd: A Critic for Language Model Generation》的翻译。

Shepherd:语言模型生成的评价

  • 摘要
  • [1 引言](#1 引言)
  • [2 数据收集](#2 数据收集)
  • [3 Shepherd模型](#3 Shepherd模型)
  • [4 评估反馈](#4 评估反馈)
  • [5 结果](#5 结果)
  • [6 相关工作](#6 相关工作)
  • [7 结论](#7 结论)
  • 不足

摘要

随着大型语言模型的改进,人们对利用这些模型的能力来完善其自身输出的技术越来越感兴趣。在这项工作中,我们介绍了Shepherd,这是一个专门针对批评模型响应和建议改进的语言模型,它超越了未经编辑的模型的能力,可以识别各种错误并提供补救建议。我们方法的核心是一个高质量的反馈数据集,我们根据社区反馈和人类注释对其进行策划。尽管Shepherd很小(7B参数),但它的批评与包括ChatGPT在内的已建立模型的批评是等效的或首选的。使用GPT4进行评估,与竞争对手相比,Shepherd的平均胜率为53-87%。在人类评估中,Shepherd严格优于其他模型,平均而言与ChatGPT密切相关。

1 引言

2 数据收集

3 Shepherd模型

4 评估反馈

5 结果

6 相关工作

7 结论

我们引入了一个新的模型来批评大型语言模型的生成。通过在多个数据集和不同的评估设置上进行广泛的实验,我们证明了我们的模型可以有效地评判答案,达到与ChatGPT相当的性能。随着LLM在越来越多的现实应用中被采用,我们认为开发自动机制来检查模型生成是很重要的。我们的批判模型Shepherd可以非常有助于提高生成质量和减少幻觉。

不足

在本文中,我们通过自动评估和人的评估来评估模型的批判能力。尽管我们努力尝试大量的数据示例,并尽我们最大的财力使用人工注释器,但很明显,该论文可以从进一步的增强中受益。这可以通过执行更细致的分析来实现,该分析使用了更多的注释器和更广泛的各种任务。

相关推荐
格林威16 小时前
传送带上运动模糊图像复原:提升动态成像清晰度的 6 个核心方案,附 OpenCV+Halcon 实战代码!
人工智能·opencv·机器学习·计算机视觉·ai·halcon·工业相机
且去填词17 小时前
DeepSeek API 深度解析:从流式输出、Function Calling 到构建拥有“手脚”的 AI 应用
人工智能·python·语言模型·llm·agent·deepseek
九河云17 小时前
从“被动适配”到“主动重构”:企业数字化转型的底层逻辑
大数据·人工智能·安全·重构·数字化转型
Java猿_17 小时前
使用Three.js创建交互式3D地球模型
人工智能·语言模型·自然语言处理
FL1717131417 小时前
excel转latex
人工智能
Aurora-Borealis.17 小时前
Day27 机器学习流水线
人工智能·机器学习
歌_顿17 小时前
知识蒸馏学习总结
人工智能·算法
老吴学AI17 小时前
系列报告九:(埃森哲)The New Rules of Platform Strategy in the Age of Agentic AI
人工智能
棒棒的皮皮17 小时前
【深度学习】YOLO模型速度优化Checklist
人工智能·深度学习·yolo·计算机视觉