Shepherd: A Critic for Language Model Generation

本文是LLM系列的相关文章,针对《Shepherd: A Critic for Language Model Generation》的翻译。

Shepherd:语言模型生成的评价

  • 摘要
  • [1 引言](#1 引言)
  • [2 数据收集](#2 数据收集)
  • [3 Shepherd模型](#3 Shepherd模型)
  • [4 评估反馈](#4 评估反馈)
  • [5 结果](#5 结果)
  • [6 相关工作](#6 相关工作)
  • [7 结论](#7 结论)
  • 不足

摘要

随着大型语言模型的改进,人们对利用这些模型的能力来完善其自身输出的技术越来越感兴趣。在这项工作中,我们介绍了Shepherd,这是一个专门针对批评模型响应和建议改进的语言模型,它超越了未经编辑的模型的能力,可以识别各种错误并提供补救建议。我们方法的核心是一个高质量的反馈数据集,我们根据社区反馈和人类注释对其进行策划。尽管Shepherd很小(7B参数),但它的批评与包括ChatGPT在内的已建立模型的批评是等效的或首选的。使用GPT4进行评估,与竞争对手相比,Shepherd的平均胜率为53-87%。在人类评估中,Shepherd严格优于其他模型,平均而言与ChatGPT密切相关。

1 引言

2 数据收集

3 Shepherd模型

4 评估反馈

5 结果

6 相关工作

7 结论

我们引入了一个新的模型来批评大型语言模型的生成。通过在多个数据集和不同的评估设置上进行广泛的实验,我们证明了我们的模型可以有效地评判答案,达到与ChatGPT相当的性能。随着LLM在越来越多的现实应用中被采用,我们认为开发自动机制来检查模型生成是很重要的。我们的批判模型Shepherd可以非常有助于提高生成质量和减少幻觉。

不足

在本文中,我们通过自动评估和人的评估来评估模型的批判能力。尽管我们努力尝试大量的数据示例,并尽我们最大的财力使用人工注释器,但很明显,该论文可以从进一步的增强中受益。这可以通过执行更细致的分析来实现,该分析使用了更多的注释器和更广泛的各种任务。

相关推荐
初学小刘31 分钟前
深度学习:从图片数据到模型训练(十分类)
人工智能·深度学习
递归不收敛1 小时前
大语言模型(LLM)入门笔记:嵌入向量与位置信息
人工智能·笔记·语言模型
之墨_2 小时前
【大语言模型】—— 自注意力机制及其变体(交叉注意力、因果注意力、多头注意力)的代码实现
人工智能·语言模型·自然语言处理
从孑开始2 小时前
ManySpeech.MoonshineAsr 使用指南
人工智能·ai·c#·.net·私有化部署·语音识别·onnx·asr·moonshine
涛涛讲AI2 小时前
一段音频多段字幕,让音频能够流畅自然对应字幕 AI生成视频,扣子生成剪映视频草稿
人工智能·音视频·语音识别
可触的未来,发芽的智生3 小时前
新奇特:黑猫警长的纳米世界,忆阻器与神经网络的智慧
javascript·人工智能·python·神经网络·架构
WWZZ20253 小时前
快速上手大模型:机器学习2(一元线性回归、代价函数、梯度下降法)
人工智能·算法·机器学习·计算机视觉·机器人·大模型·slam
AKAMAI3 小时前
数据孤岛破局之战 :跨业务分析的难题攻坚
运维·人工智能·云计算
Chicheng_MA4 小时前
算能 CV184 智能相机整体方案介绍
人工智能·数码相机·算能
Element_南笙4 小时前
吴恩达新课程:Agentic AI(笔记2)
数据库·人工智能·笔记·python·深度学习·ui·自然语言处理