Shepherd: A Critic for Language Model Generation

本文是LLM系列的相关文章,针对《Shepherd: A Critic for Language Model Generation》的翻译。

Shepherd:语言模型生成的评价

  • 摘要
  • [1 引言](#1 引言)
  • [2 数据收集](#2 数据收集)
  • [3 Shepherd模型](#3 Shepherd模型)
  • [4 评估反馈](#4 评估反馈)
  • [5 结果](#5 结果)
  • [6 相关工作](#6 相关工作)
  • [7 结论](#7 结论)
  • 不足

摘要

随着大型语言模型的改进,人们对利用这些模型的能力来完善其自身输出的技术越来越感兴趣。在这项工作中,我们介绍了Shepherd,这是一个专门针对批评模型响应和建议改进的语言模型,它超越了未经编辑的模型的能力,可以识别各种错误并提供补救建议。我们方法的核心是一个高质量的反馈数据集,我们根据社区反馈和人类注释对其进行策划。尽管Shepherd很小(7B参数),但它的批评与包括ChatGPT在内的已建立模型的批评是等效的或首选的。使用GPT4进行评估,与竞争对手相比,Shepherd的平均胜率为53-87%。在人类评估中,Shepherd严格优于其他模型,平均而言与ChatGPT密切相关。

1 引言

2 数据收集

3 Shepherd模型

4 评估反馈

5 结果

6 相关工作

7 结论

我们引入了一个新的模型来批评大型语言模型的生成。通过在多个数据集和不同的评估设置上进行广泛的实验,我们证明了我们的模型可以有效地评判答案,达到与ChatGPT相当的性能。随着LLM在越来越多的现实应用中被采用,我们认为开发自动机制来检查模型生成是很重要的。我们的批判模型Shepherd可以非常有助于提高生成质量和减少幻觉。

不足

在本文中,我们通过自动评估和人的评估来评估模型的批判能力。尽管我们努力尝试大量的数据示例,并尽我们最大的财力使用人工注释器,但很明显,该论文可以从进一步的增强中受益。这可以通过执行更细致的分析来实现,该分析使用了更多的注释器和更广泛的各种任务。

相关推荐
漫长的~以后7 分钟前
Edge TPU LiteRT V2拆解:1GB内存设备也能流畅跑AI的底层逻辑
前端·人工智能·edge
星火10249 分钟前
“重生”之我用 Solo 写了一盘中国象棋
人工智能·ai编程
祝余Eleanor9 分钟前
Day37 模型可视化与推理
人工智能·python·深度学习
是Dream呀10 分钟前
【openFuyao】openFuyao社区AI推理加速组件技术解析与实践
人工智能·架构·openfuyao
独自归家的兔13 分钟前
千问通义plus - 代码解释器的使用
java·人工智能
程序员博博13 分钟前
这才是vibe coding正确的打开方式 - 手把手教你开发一个MCP服务
javascript·人工智能·后端
文心快码 Baidu Comate23 分钟前
Comate Spec模式实测:让AI编程更精准可靠
人工智能·ai编程·文心快码·ai编程助手
疾风sxp23 分钟前
nl2sql技术实现自动sql生成
人工智能·word2vec
阿星AI工作室26 分钟前
让gemini3做的网页拥有支付功能,访客变付费用户!附提示词
人工智能
LaughingZhu38 分钟前
Product Hunt 每日热榜 | 2025-12-10
人工智能·经验分享·深度学习·神经网络·产品运营