神经网络基础-神经网络补充概念-59-padding

概念

在深度学习中,"padding"(填充)通常是指在卷积神经网络(Convolutional Neural Networks,CNNs)等神经网络层中,在输入数据的周围添加额外的元素(通常是零),以调整输入数据的尺寸或形状,从而影响输出的尺寸。

主要目的是为了解决卷积层或池化层等操作对输入尺寸的影响,特别是在多层网络中,希望保持尺寸的一致性。填充在图像处理中也可以用来控制滤波器的影响边界像素的程度。

填充可以分为两种常见的类型:零填充(Zero Padding)和边界填充(Border Padding)。

零填充(Zero Padding): 在输入数据的周围添加零元素。这种填充方式常用于卷积层,以控制卷积核在边界处的影响,同时也能够保持尺寸的一致性。

边界填充(Border Padding): 在输入数据的边界处添加重复或镜像的像素。这种填充方式常用于处理边界像素,以便卷积操作能够完全涵盖输入数据。

填充在卷积神经网络中起到了重要作用,它可以影响输出特征图的大小,进而影响网络的参数数量和计算复杂度。常见的填充方式包括 "valid"(无填充)、"same"(保持尺寸不变,使用零填充)和 "full"(完全填充,通常用于全卷积网络)。

代码实现

0填充

python 复制代码
import tensorflow as tf

# 创建一个输入张量
input_data = tf.constant([[1, 2],
                          [3, 4]])

# 进行零填充
padded_data = tf.pad(input_data, paddings=[[1, 1], [1, 1]])

print("原始数据:")
print(input_data.numpy())
print("填充后的数据:")
print(padded_data.numpy())
相关推荐
Clarence Liu16 小时前
用大白话讲解人工智能(9) Transformer模型:让AI真正理解上下文
人工智能·深度学习·transformer
带娃的IT创业者16 小时前
ArXiv投稿详细操作指南 & AI论文写作最佳实践
人工智能·研究·arxiv·论文发布·论文预印本
麦麦大数据16 小时前
F065_基于机器学习的KDD CUP 99网络入侵检测系统实战
网络·人工智能·机器学习·网络安全·入侵检测
Boxsc_midnight16 小时前
【MCP+ComfyUI+CherryStudio+Ollama】实现对话式智能批量生成图片(或视频)的方案,硬件友好方案!
网络·人工智能
海天一色y16 小时前
从零构建医疗AI Agent:RAG增强检索、混合搜索与模型部署实战
人工智能·langchain·智能体开发
Katecat9966316 小时前
基于YOLOv10的混凝土蜂窝缺陷检测系统深度学习模型
人工智能·深度学习·yolo
自然语16 小时前
人工智能之数字生命-观察的实现
数据结构·人工智能·学习·算法
龙亘川16 小时前
城市大脑:智慧城市演进的核心引擎与实践路径探析
人工智能·智慧城市·城市大脑
AI Echoes16 小时前
对接自定义向量数据库的配置与使用
数据库·人工智能·python·langchain·prompt·agent
AIMarketing16 小时前
生成引擎优化(GEO)2.0:AI 营销时代的品牌增长新范式
人工智能