神经网络基础-神经网络补充概念-59-padding

概念

在深度学习中,"padding"(填充)通常是指在卷积神经网络(Convolutional Neural Networks,CNNs)等神经网络层中,在输入数据的周围添加额外的元素(通常是零),以调整输入数据的尺寸或形状,从而影响输出的尺寸。

主要目的是为了解决卷积层或池化层等操作对输入尺寸的影响,特别是在多层网络中,希望保持尺寸的一致性。填充在图像处理中也可以用来控制滤波器的影响边界像素的程度。

填充可以分为两种常见的类型:零填充(Zero Padding)和边界填充(Border Padding)。

零填充(Zero Padding): 在输入数据的周围添加零元素。这种填充方式常用于卷积层,以控制卷积核在边界处的影响,同时也能够保持尺寸的一致性。

边界填充(Border Padding): 在输入数据的边界处添加重复或镜像的像素。这种填充方式常用于处理边界像素,以便卷积操作能够完全涵盖输入数据。

填充在卷积神经网络中起到了重要作用,它可以影响输出特征图的大小,进而影响网络的参数数量和计算复杂度。常见的填充方式包括 "valid"(无填充)、"same"(保持尺寸不变,使用零填充)和 "full"(完全填充,通常用于全卷积网络)。

代码实现

0填充

python 复制代码
import tensorflow as tf

# 创建一个输入张量
input_data = tf.constant([[1, 2],
                          [3, 4]])

# 进行零填充
padded_data = tf.pad(input_data, paddings=[[1, 1], [1, 1]])

print("原始数据:")
print(input_data.numpy())
print("填充后的数据:")
print(padded_data.numpy())
相关推荐
AndrewHZ1 分钟前
【图像处理基石】老照片修复入门:用技术唤醒沉睡的回忆
图像处理·人工智能·opencv·计算机视觉·cv·图像修复
AI_Auto23 分钟前
MES系列-制造流程数字化的实现
大数据·人工智能·自动化·制造·数字化
DolphinDB智臾科技24 分钟前
DolphinDB × 浙江大学合作新课——量化金融:理论与应用
人工智能·金融·浙江大学·量化金融·dolphindb
老赵聊算法、大模型备案27 分钟前
广西 “人工智能 + 制造” 政策科普:十大支持方向与补贴明细
人工智能·aigc·制造
格林威28 分钟前
AOI在PCB制造领域的核心应用
人工智能·数码相机·计算机视觉·视觉检测·制造·pcb·aoi
阿里云大数据AI技术43 分钟前
云栖实录|智能哨兵:AI驱动的云平台风险巡检
大数据·运维·人工智能
机器之心1 小时前
单张4090跑到30fps,范浩强团队让VLA实时跑起来了
人工智能·openai
国科安芯1 小时前
光电传感器领域国产MCU芯片抗辐照技术考量
网络·人工智能·单片机·嵌入式硬件·安全
木昆子1 小时前
大模型流式输出:七大底层传输技术对比探究
人工智能·http·ai编程
拓端研究室1 小时前
专题:2025机器人产业的变革与展望白皮书:人形机器人与工业机器人洞察|附130+份报告PDF、数据、绘图模板汇总下载
人工智能·机器人·pdf