神经网络基础-神经网络补充概念-59-padding

概念

在深度学习中,"padding"(填充)通常是指在卷积神经网络(Convolutional Neural Networks,CNNs)等神经网络层中,在输入数据的周围添加额外的元素(通常是零),以调整输入数据的尺寸或形状,从而影响输出的尺寸。

主要目的是为了解决卷积层或池化层等操作对输入尺寸的影响,特别是在多层网络中,希望保持尺寸的一致性。填充在图像处理中也可以用来控制滤波器的影响边界像素的程度。

填充可以分为两种常见的类型:零填充(Zero Padding)和边界填充(Border Padding)。

零填充(Zero Padding): 在输入数据的周围添加零元素。这种填充方式常用于卷积层,以控制卷积核在边界处的影响,同时也能够保持尺寸的一致性。

边界填充(Border Padding): 在输入数据的边界处添加重复或镜像的像素。这种填充方式常用于处理边界像素,以便卷积操作能够完全涵盖输入数据。

填充在卷积神经网络中起到了重要作用,它可以影响输出特征图的大小,进而影响网络的参数数量和计算复杂度。常见的填充方式包括 "valid"(无填充)、"same"(保持尺寸不变,使用零填充)和 "full"(完全填充,通常用于全卷积网络)。

代码实现

0填充

python 复制代码
import tensorflow as tf

# 创建一个输入张量
input_data = tf.constant([[1, 2],
                          [3, 4]])

# 进行零填充
padded_data = tf.pad(input_data, paddings=[[1, 1], [1, 1]])

print("原始数据:")
print(input_data.numpy())
print("填充后的数据:")
print(padded_data.numpy())
相关推荐
北辰alk1 小时前
RAG索引流程详解:如何高效解析文档构建知识库
人工智能
九河云1 小时前
海上风电“AI偏航对风”:把发电量提升2.1%,单台年增30万度
大数据·人工智能·数字化转型
wm10431 小时前
机器学习第二讲 KNN算法
人工智能·算法·机器学习
沈询-阿里2 小时前
Skills vs MCP:竞合关系还是互补?深入解析Function Calling、MCP和Skills的本质差异
人工智能·ai·agent·ai编程
xiaobai1782 小时前
测试工程师入门AI技术 - 前序:跨越焦虑,从优势出发开启学习之旅
人工智能·学习
盛世宏博北京2 小时前
云边协同・跨系统联动:智慧档案馆建设与功能落地
大数据·人工智能
TGITCIC3 小时前
讲透知识图谱Neo4j在构建Agent时到底怎么用(二)
人工智能·知识图谱·neo4j·ai agent·ai智能体·大模型落地·graphrag
逆羽飘扬3 小时前
DeepSeek-mHC深度拆解:流形约束如何驯服狂暴的超连接?
人工智能
bing.shao3 小时前
AI工作流如何开始
人工智能
小途软件3 小时前
用于机器人电池电量预测的Sarsa强化学习混合集成方法
java·人工智能·pytorch·python·深度学习·语言模型