神经网络基础-神经网络补充概念-59-padding

概念

在深度学习中,"padding"(填充)通常是指在卷积神经网络(Convolutional Neural Networks,CNNs)等神经网络层中,在输入数据的周围添加额外的元素(通常是零),以调整输入数据的尺寸或形状,从而影响输出的尺寸。

主要目的是为了解决卷积层或池化层等操作对输入尺寸的影响,特别是在多层网络中,希望保持尺寸的一致性。填充在图像处理中也可以用来控制滤波器的影响边界像素的程度。

填充可以分为两种常见的类型:零填充(Zero Padding)和边界填充(Border Padding)。

零填充(Zero Padding): 在输入数据的周围添加零元素。这种填充方式常用于卷积层,以控制卷积核在边界处的影响,同时也能够保持尺寸的一致性。

边界填充(Border Padding): 在输入数据的边界处添加重复或镜像的像素。这种填充方式常用于处理边界像素,以便卷积操作能够完全涵盖输入数据。

填充在卷积神经网络中起到了重要作用,它可以影响输出特征图的大小,进而影响网络的参数数量和计算复杂度。常见的填充方式包括 "valid"(无填充)、"same"(保持尺寸不变,使用零填充)和 "full"(完全填充,通常用于全卷积网络)。

代码实现

0填充

python 复制代码
import tensorflow as tf

# 创建一个输入张量
input_data = tf.constant([[1, 2],
                          [3, 4]])

# 进行零填充
padded_data = tf.pad(input_data, paddings=[[1, 1], [1, 1]])

print("原始数据:")
print(input_data.numpy())
print("填充后的数据:")
print(padded_data.numpy())
相关推荐
陈天伟教授10 分钟前
人工智能应用- 语言理解:06.大语言模型
人工智能·语言模型·自然语言处理
海心焱18 分钟前
安全之盾:深度解析 MCP 如何缝合企业级 SSO 身份验证体系,构建可信 AI 数据通道
人工智能·安全
2501_9453184921 分钟前
AI证书能否作为招聘/培训标准?2026最新
人工智能
2601_9491465321 分钟前
Python语音通知接口接入教程:开发者快速集成AI语音API的脚本实现
人工智能·python·语音识别
韦东东22 分钟前
RAGFlow v0.20的Agent重大更新:text2sql的Agent案例测试
人工智能·大模型·agent·text2sql·ragflow
人工智能AI技术25 分钟前
DeepSeek-OCR 2实战:让AI像人一样“看懂”复杂文档
人工智能
OpenBayes42 分钟前
教程上新|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
人工智能·深度学习·目标检测·机器学习·大模型·ocr·gpu算力
退休钓鱼选手1 小时前
[ Pytorch教程 ] 神经网络的基本骨架 torch.nn -Neural Network
pytorch·深度学习·神经网络
冰糖猕猴桃1 小时前
【AI】把“大杂烩抽取”拆成多步推理:一个从单提示到多阶段管线的实践案例
大数据·人工智能·ai·提示词·多步推理
PPIO派欧云1 小时前
PPIO上线GLM-OCR:0.9B参数SOTA性能,支持一键部署
人工智能·ai·大模型·ocr·智谱