神经网络基础-神经网络补充概念-59-padding

概念

在深度学习中,"padding"(填充)通常是指在卷积神经网络(Convolutional Neural Networks,CNNs)等神经网络层中,在输入数据的周围添加额外的元素(通常是零),以调整输入数据的尺寸或形状,从而影响输出的尺寸。

主要目的是为了解决卷积层或池化层等操作对输入尺寸的影响,特别是在多层网络中,希望保持尺寸的一致性。填充在图像处理中也可以用来控制滤波器的影响边界像素的程度。

填充可以分为两种常见的类型:零填充(Zero Padding)和边界填充(Border Padding)。

零填充(Zero Padding): 在输入数据的周围添加零元素。这种填充方式常用于卷积层,以控制卷积核在边界处的影响,同时也能够保持尺寸的一致性。

边界填充(Border Padding): 在输入数据的边界处添加重复或镜像的像素。这种填充方式常用于处理边界像素,以便卷积操作能够完全涵盖输入数据。

填充在卷积神经网络中起到了重要作用,它可以影响输出特征图的大小,进而影响网络的参数数量和计算复杂度。常见的填充方式包括 "valid"(无填充)、"same"(保持尺寸不变,使用零填充)和 "full"(完全填充,通常用于全卷积网络)。

代码实现

0填充

python 复制代码
import tensorflow as tf

# 创建一个输入张量
input_data = tf.constant([[1, 2],
                          [3, 4]])

# 进行零填充
padded_data = tf.pad(input_data, paddings=[[1, 1], [1, 1]])

print("原始数据:")
print(input_data.numpy())
print("填充后的数据:")
print(padded_data.numpy())
相关推荐
LDG_AGI19 小时前
【推荐系统】深度学习训练框架(八):PyTorch分布式采样器DistributedSampler原理详解
人工智能·pytorch·分布式·深度学习·算法·机器学习·推荐算法
智能化咨询19 小时前
(66页PPT)某著名企业XX集团数据分析平台建设项目方案设计(附下载方式)
大数据·人工智能·数据分析
serve the people21 小时前
TensorFlow 图执行(tf.function)的 “非严格执行(Non-strict Execution)” 特性
人工智能·python·tensorflow
泰迪智能科技21 小时前
图书推荐分享 | 堪称教材天花板,深度学习教材-TensorFlow 2 深度学习实战(第2版)(微课版)
人工智能·深度学习·tensorflow
吴佳浩1 天前
LangChain 深入
人工智能·python·langchain
LplLpl111 天前
AI 算法竞赛通关指南:基于深度学习的图像分类模型优化实战
大数据·人工智能·机器学习
依米s1 天前
各年度人工智能大会WAIC核心议题(持续更新)
人工智能·人工智能+·waic·人工智能大会+
小徐xxx1 天前
Mamba架构讲解
深度学习·mamba·学习记录
python机器学习建模1 天前
22篇经典金融风控论文复现(2025年11月更新)
人工智能·机器学习·论文·期刊·金融风控
Codebee1 天前
深度解析AI编程技术:从原理到实践,手把手教你落地
人工智能·设计模式·开源