openCV实战-系列教程2:阈值与平滑处理(图像阈值/图像平滑处理/高斯/中值滤波)、源码解读

1、图像阈值

t图像阈值函数,就是需要判断一下像素值大于一个数应该怎么处理,小于一个数应该怎么处理

python 复制代码
ret, dst = cv2.threshold(src, thresh, maxval, type)

参数解析:

  • src: 原始输入图,只能 输入通道图像,通常来说为灰度图
  • dst: 输出图
  • thresh: 指定的阈值
  • maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值
  • type:二值化操作的类型,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV
  • cv2.THRESH_BINARY:超过阈值部分取maxval(最大值),否则取0
    • 如果阈值取150,超过150就会都变成255,否则变为0
  • cv2.THRESH_BINARY_INV:THRESH_BINARY的反转
  • cv2.THRESH_TRUNC:大于阈值部分设为阈值,否则不变
  • cv2.THRESH_TOZERO:大于阈值部分不改变,否则设为0
  • cv2.THRESH_TOZERO_INV:THRESH_TOZERO的反转
python 复制代码
import cv2 #opencv读取的格式是BGR
import numpy as np
import matplotlib.pyplot as plt#Matplotlib是RGB

# 读取图像为灰度图
img=cv2.imread('cat.jpg')
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

# 五种参数都设置一遍
ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
_, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV)
_, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC)
_, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO)
_, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV)

# 存到一个变量中
titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]

# 放到一起画出来
for i in range(6):
    plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()

这里(ret,thresh)我们基本上只需要第二个参数就行了,输出图:

  • 第一张是原始图像
  • 第二张,所有大于127的区域全部变成了白色
  • 第三张,将第二张进行了翻转
  • 第四张,所有大于127的全部等于127
  • 第五张,小于127全部为0 ,大于127的不变
  • 第六张,第五张的反转

2、图像平滑

图像平滑处理就是对图像进行各种滤波操作,这个和卷积操作有一些相似

首先读取打印原始图像:

python 复制代码
import cv2  # opencv读取的格式是BGR
import matplotlib.pyplot as plt  # Matplotlib是RGB
img = cv2.imread('lenaNoise.png')
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

打印的图像:

可以看到原始图像有很多白色斑点的噪音,接下来用几种不同滤波操作过滤这个噪音点

2.1 均值滤波

实际上是一个简单的平均卷积操作,如下图是一个图像的像素点的矩阵:

比如圈住的这个部分,是一个3*3的区域,对这3*3的9个像素值求出一个均值,然后将中间的204替换成这个均值,那么就完成了204的滤波操作,其他的像素点也是进行这样的操作。当然也可以是一个5*5的区域,只能是奇数。

实现这个操作很简单:

python 复制代码
# 均值滤波
# 简单的平均卷积操作
blur = cv2.blur(img, (3, 3))
cv2.imshow('blur', blur)
cv2.waitKey(0)
cv2.destroyAllWindows()

打印结果:

可以发现白点被淡化了一些,但是还是存在

2.2 方框滤波

基本上和均值滤波一样:

python 复制代码
# 方框滤波
# 基本和均值一样,可以选择归一化
box = cv2.boxFilter(img,-1,(3,3), normalize=True)  

cv2.imshow('box', box)
cv2.waitKey(0)
cv2.destroyAllWindows()

这里可以选择

相关推荐
数据分享者1 分钟前
猫狗图像分类数据集-21616张标准化128x128像素JPEG图像-适用于计算机视觉教学研究与深度学习模型训练-研究人员、开发者和学生提供实验平台
深度学习·计算机视觉·分类
duyinbi75174 分钟前
【计算机视觉实践】:基于YOLOv8-BIMAFPN的海洋漏油事件检测与分类系统实现_2
yolo·计算机视觉·分类
西柚小萌新2 小时前
【计算机视觉CV:目标检测】--1.目标检测简介
目标检测·计算机视觉·目标跟踪
Rui_Freely2 小时前
Vins-Fusion之 相机—IMU在线标定(两帧间旋转估计)(十)
人工智能·算法·计算机视觉
棒棒的皮皮2 小时前
【深度学习】YOLO模型精度优化全攻略
人工智能·深度学习·yolo·计算机视觉
集和诚JHCTECH3 小时前
BRAV-7722赋能手术机器人:高性能控制方案,守护精准手术的每一刻
人工智能·嵌入式硬件·计算机视觉
Jerryhut3 小时前
背景建模实战:从帧差法到混合高斯模型的 OpenCV 实现
人工智能·opencv·计算机视觉
棒棒的皮皮4 小时前
【深度学习】YOLO实战之模型训练
人工智能·深度学习·yolo·计算机视觉
数据光子4 小时前
【YOLO数据集】遛狗未牵绳目标检测
人工智能·python·yolo·目标检测·计算机视觉
乞丐哥5 小时前
乞丐哥的私房菜(Ubuntu OpenCV篇——Image Processing 节 之 Out-of-focus Deblur Filter 失焦去模糊滤波器 滤镜)
c++·图像处理·opencv·ubuntu·计算机视觉