神经网络基础-神经网络补充概念-48-rmsprop

概念## 标题

RMSProp(Root Mean Square Propagation)是一种优化算法,用于在训练神经网络等机器学习模型时自适应地调整学习率,以加速收敛并提高性能。RMSProp可以有效地处理不同特征尺度和梯度变化,对于处理稀疏数据和非平稳目标函数也表现良好。

核心思想

RMSProp的核心思想是根据参数梯度的历史信息自适应地调整每个参数的学习率。具体来说,RMSProp使用指数加权移动平均(Exponential Moving Average,EMA)来计算参数的平方梯度的均值,并使用该平均值来调整学习率。

步骤

1初始化参数:初始化模型的参数。

2初始化均方梯度的移动平均:初始化一个用于记录参数平方梯度的指数加权移动平均变量,通常初始化为零向量。

3计算梯度:计算当前位置的梯度。

4计算均方梯度的移动平均:计算参数平方梯度的指数加权移动平均,通常使用指数加权平均公式。

python 复制代码
moving_average = beta * moving_average + (1 - beta) * gradient^2

其中,beta 是用于计算指数加权平均的超参数

5更新参数:根据均方梯度的移动平均和学习率,更新模型的参数。

python 复制代码
parameter = parameter - learning_rate * gradient / sqrt(moving_average + epsilon)

其中,epsilon 是一个小的常数,防止分母为零。

6重复迭代:重复执行步骤 3 到 5,直到达到预定的迭代次数(epochs)或收敛条件。

代码实现

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# 生成随机数据
np.random.seed(0)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)

# 添加偏置项
X_b = np.c_[np.ones((100, 1)), X]

# 初始化参数
theta = np.random.randn(2, 1)

# 学习率
learning_rate = 0.1

# RMSProp参数
beta = 0.9
epsilon = 1e-8
moving_average = np.zeros_like(theta)

# 迭代次数
n_iterations = 1000

# RMSProp优化
for iteration in range(n_iterations):
    gradients = 2 / 100 * X_b.T.dot(X_b.dot(theta) - y)
    moving_average = beta * moving_average + (1 - beta) * gradients**2
    theta = theta - learning_rate * gradients / np.sqrt(moving_average + epsilon)

# 绘制数据和拟合直线
plt.scatter(X, y)
plt.plot(X, X_b.dot(theta), color='red')
plt.xlabel('X')
plt.ylabel('y')
plt.title('Linear Regression with RMSProp Optimization')
plt.show()

print("Intercept (theta0):", theta[0][0])
print("Slope (theta1):", theta[1][0])
相关推荐
小鸡吃米…4 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫5 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)5 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan5 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维5 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS5 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd5 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟6 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然6 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~6 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1