神经网络基础-神经网络补充概念-48-rmsprop

概念## 标题

RMSProp(Root Mean Square Propagation)是一种优化算法,用于在训练神经网络等机器学习模型时自适应地调整学习率,以加速收敛并提高性能。RMSProp可以有效地处理不同特征尺度和梯度变化,对于处理稀疏数据和非平稳目标函数也表现良好。

核心思想

RMSProp的核心思想是根据参数梯度的历史信息自适应地调整每个参数的学习率。具体来说,RMSProp使用指数加权移动平均(Exponential Moving Average,EMA)来计算参数的平方梯度的均值,并使用该平均值来调整学习率。

步骤

1初始化参数:初始化模型的参数。

2初始化均方梯度的移动平均:初始化一个用于记录参数平方梯度的指数加权移动平均变量,通常初始化为零向量。

3计算梯度:计算当前位置的梯度。

4计算均方梯度的移动平均:计算参数平方梯度的指数加权移动平均,通常使用指数加权平均公式。

python 复制代码
moving_average = beta * moving_average + (1 - beta) * gradient^2

其中,beta 是用于计算指数加权平均的超参数

5更新参数:根据均方梯度的移动平均和学习率,更新模型的参数。

python 复制代码
parameter = parameter - learning_rate * gradient / sqrt(moving_average + epsilon)

其中,epsilon 是一个小的常数,防止分母为零。

6重复迭代:重复执行步骤 3 到 5,直到达到预定的迭代次数(epochs)或收敛条件。

代码实现

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# 生成随机数据
np.random.seed(0)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)

# 添加偏置项
X_b = np.c_[np.ones((100, 1)), X]

# 初始化参数
theta = np.random.randn(2, 1)

# 学习率
learning_rate = 0.1

# RMSProp参数
beta = 0.9
epsilon = 1e-8
moving_average = np.zeros_like(theta)

# 迭代次数
n_iterations = 1000

# RMSProp优化
for iteration in range(n_iterations):
    gradients = 2 / 100 * X_b.T.dot(X_b.dot(theta) - y)
    moving_average = beta * moving_average + (1 - beta) * gradients**2
    theta = theta - learning_rate * gradients / np.sqrt(moving_average + epsilon)

# 绘制数据和拟合直线
plt.scatter(X, y)
plt.plot(X, X_b.dot(theta), color='red')
plt.xlabel('X')
plt.ylabel('y')
plt.title('Linear Regression with RMSProp Optimization')
plt.show()

print("Intercept (theta0):", theta[0][0])
print("Slope (theta1):", theta[1][0])
相关推荐
乾元4 分钟前
拒绝服务的进化:AI 调度下的分布式协同攻击策略
人工智能·分布式
困死,根本不会5 分钟前
OpenCV摄像头实时处理:从单特征到联合识别(形状识别 + 颜色识别 + 形状颜色联合识别)
人工智能·opencv·计算机视觉
工具人呵呵6 分钟前
[嵌入式AI从0开始到入土]22_基于昇腾310P RC模式的ACT模型部署实践
人工智能
yj_sharing7 分钟前
PyTorch深度学习实战:从模型构建到训练技巧
人工智能·pytorch·深度学习
安全二次方security²7 分钟前
CUDA C++编程指南(7.31&32&33&34)——C++语言扩展之性能分析计数器函数和断言、陷阱、断点函数
c++·人工智能·nvidia·cuda·断点·断言·性能分析计数器函数
bksheng9 分钟前
【Dify】安装与部署
人工智能
狸奴算君10 分钟前
告别数据泄露:三步构建企业级AI的隐私保护盾
人工智能
Christo317 分钟前
TKDE-2026《Efficient Co-Clustering via Bipartite Graph Factorization》
人工智能·算法·机器学习·数据挖掘
jackylzh17 分钟前
PyTorch 2.x 中 `torch.load` 的 `FutureWarning` 与 `weights_only=False` 参数分析
人工智能·pytorch·python
叶庭云24 分钟前
AI Agent KernelCAT:深耕算子开发和模型迁移的 “计算加速专家”
人工智能·运筹优化·算子·ai agent·kernelcat·模型迁移适配·生态壁垒