神经网络基础-神经网络补充概念-48-rmsprop

概念## 标题

RMSProp(Root Mean Square Propagation)是一种优化算法,用于在训练神经网络等机器学习模型时自适应地调整学习率,以加速收敛并提高性能。RMSProp可以有效地处理不同特征尺度和梯度变化,对于处理稀疏数据和非平稳目标函数也表现良好。

核心思想

RMSProp的核心思想是根据参数梯度的历史信息自适应地调整每个参数的学习率。具体来说,RMSProp使用指数加权移动平均(Exponential Moving Average,EMA)来计算参数的平方梯度的均值,并使用该平均值来调整学习率。

步骤

1初始化参数:初始化模型的参数。

2初始化均方梯度的移动平均:初始化一个用于记录参数平方梯度的指数加权移动平均变量,通常初始化为零向量。

3计算梯度:计算当前位置的梯度。

4计算均方梯度的移动平均:计算参数平方梯度的指数加权移动平均,通常使用指数加权平均公式。

python 复制代码
moving_average = beta * moving_average + (1 - beta) * gradient^2

其中,beta 是用于计算指数加权平均的超参数

5更新参数:根据均方梯度的移动平均和学习率,更新模型的参数。

python 复制代码
parameter = parameter - learning_rate * gradient / sqrt(moving_average + epsilon)

其中,epsilon 是一个小的常数,防止分母为零。

6重复迭代:重复执行步骤 3 到 5,直到达到预定的迭代次数(epochs)或收敛条件。

代码实现

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# 生成随机数据
np.random.seed(0)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)

# 添加偏置项
X_b = np.c_[np.ones((100, 1)), X]

# 初始化参数
theta = np.random.randn(2, 1)

# 学习率
learning_rate = 0.1

# RMSProp参数
beta = 0.9
epsilon = 1e-8
moving_average = np.zeros_like(theta)

# 迭代次数
n_iterations = 1000

# RMSProp优化
for iteration in range(n_iterations):
    gradients = 2 / 100 * X_b.T.dot(X_b.dot(theta) - y)
    moving_average = beta * moving_average + (1 - beta) * gradients**2
    theta = theta - learning_rate * gradients / np.sqrt(moving_average + epsilon)

# 绘制数据和拟合直线
plt.scatter(X, y)
plt.plot(X, X_b.dot(theta), color='red')
plt.xlabel('X')
plt.ylabel('y')
plt.title('Linear Regression with RMSProp Optimization')
plt.show()

print("Intercept (theta0):", theta[0][0])
print("Slope (theta1):", theta[1][0])
相关推荐
夜阳朔几秒前
Conda环境激活失效问题
人工智能·后端·python
小Lu的开源日常5 分钟前
AI模型太多太乱?用 OpenRouter,一个接口全搞定!
人工智能·llm·api
mit6.8241 小时前
[Meetily后端框架] Whisper转录服务器 | 后端服务管理脚本
c++·人工智能·后端·python
Baihai IDP1 小时前
AI 系统架构的演进:LLM → RAG → AI Workflow → AI Agent
人工智能·ai·系统架构·llm·agent·rag·白海科技
沫儿笙1 小时前
弧焊机器人气体全方位节能指南
网络·人工智能·机器人
LONGZETECH1 小时前
【龙泽科技】新能源汽车维护与动力蓄电池检测仿真教学软件【吉利几何G6】
人工智能·科技·汽车·汽车仿真教学软件·汽车教学软件
看到我,请让我去学习2 小时前
OpenCV 与深度学习:从图像分类到目标检测技术
深度学习·opencv·分类
jndingxin2 小时前
OpenCV 图像哈希类cv::img_hash::AverageHash
人工智能·opencv·哈希算法
加油加油的大力2 小时前
入门基于深度学习(以yolov8和unet为例)的计算机视觉领域的学习路线
深度学习·yolo·计算机视觉
Jamence3 小时前
多模态大语言模型arxiv论文略读(153)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记