神经网络基础-神经网络补充概念-48-rmsprop

概念## 标题

RMSProp(Root Mean Square Propagation)是一种优化算法,用于在训练神经网络等机器学习模型时自适应地调整学习率,以加速收敛并提高性能。RMSProp可以有效地处理不同特征尺度和梯度变化,对于处理稀疏数据和非平稳目标函数也表现良好。

核心思想

RMSProp的核心思想是根据参数梯度的历史信息自适应地调整每个参数的学习率。具体来说,RMSProp使用指数加权移动平均(Exponential Moving Average,EMA)来计算参数的平方梯度的均值,并使用该平均值来调整学习率。

步骤

1初始化参数:初始化模型的参数。

2初始化均方梯度的移动平均:初始化一个用于记录参数平方梯度的指数加权移动平均变量,通常初始化为零向量。

3计算梯度:计算当前位置的梯度。

4计算均方梯度的移动平均:计算参数平方梯度的指数加权移动平均,通常使用指数加权平均公式。

python 复制代码
moving_average = beta * moving_average + (1 - beta) * gradient^2

其中,beta 是用于计算指数加权平均的超参数

5更新参数:根据均方梯度的移动平均和学习率,更新模型的参数。

python 复制代码
parameter = parameter - learning_rate * gradient / sqrt(moving_average + epsilon)

其中,epsilon 是一个小的常数,防止分母为零。

6重复迭代:重复执行步骤 3 到 5,直到达到预定的迭代次数(epochs)或收敛条件。

代码实现

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# 生成随机数据
np.random.seed(0)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)

# 添加偏置项
X_b = np.c_[np.ones((100, 1)), X]

# 初始化参数
theta = np.random.randn(2, 1)

# 学习率
learning_rate = 0.1

# RMSProp参数
beta = 0.9
epsilon = 1e-8
moving_average = np.zeros_like(theta)

# 迭代次数
n_iterations = 1000

# RMSProp优化
for iteration in range(n_iterations):
    gradients = 2 / 100 * X_b.T.dot(X_b.dot(theta) - y)
    moving_average = beta * moving_average + (1 - beta) * gradients**2
    theta = theta - learning_rate * gradients / np.sqrt(moving_average + epsilon)

# 绘制数据和拟合直线
plt.scatter(X, y)
plt.plot(X, X_b.dot(theta), color='red')
plt.xlabel('X')
plt.ylabel('y')
plt.title('Linear Regression with RMSProp Optimization')
plt.show()

print("Intercept (theta0):", theta[0][0])
print("Slope (theta1):", theta[1][0])
相关推荐
啊阿狸不会拉杆8 分钟前
《数字图像处理》第 10 章 - 图像分割
图像处理·人工智能·深度学习·算法·计算机视觉·数字图像处理
Dev7z9 分钟前
基于深度学习的车辆品牌与类型智能识别系统设计与实现
人工智能·深度学习
国科安芯9 分钟前
强辐射环境无人机视频系统MCU可靠性分析
人工智能·单片机·嵌入式硬件·音视频·无人机·边缘计算·安全性测试
华奥系科技9 分钟前
社区治理创新模式:智慧社区如何通过数字化工具激活邻里活力
大数据·人工智能
AI_567810 分钟前
Airflow“3分钟上手”教程:用Python定义定时数据清洗任务
开发语言·人工智能·python
蓝海星梦10 分钟前
【强化学习】深度解析 DAPO:从 GRPO 到 Decoupled Clip & Dynamic Sampling
人工智能·深度学习·自然语言处理·强化学习
人工智能AI技术14 分钟前
Agent核心模块进阶:让每个组件更智能、更实用
人工智能
羑悻的小杀马特15 分钟前
不做“孤岛”做“中枢”:拆解金仓时序库,看国产基础软件如何玩转“多模融合”
数据库·人工智能
weixin_4624462316 分钟前
从零搭建AI关系图生成助手:Chainlit 结合LangChain、LangGraph和可视化技术
人工智能·langchain·langgraph·chainlit
桂花饼16 分钟前
Python 实战 Sora-2 视频生成:基于小镜 AI 的低成本与角色一致性解决方案
人工智能·sora2·gemini 3·gpt-5.2·codex-max