神经网络基础-神经网络补充概念-48-rmsprop

概念## 标题

RMSProp(Root Mean Square Propagation)是一种优化算法,用于在训练神经网络等机器学习模型时自适应地调整学习率,以加速收敛并提高性能。RMSProp可以有效地处理不同特征尺度和梯度变化,对于处理稀疏数据和非平稳目标函数也表现良好。

核心思想

RMSProp的核心思想是根据参数梯度的历史信息自适应地调整每个参数的学习率。具体来说,RMSProp使用指数加权移动平均(Exponential Moving Average,EMA)来计算参数的平方梯度的均值,并使用该平均值来调整学习率。

步骤

1初始化参数:初始化模型的参数。

2初始化均方梯度的移动平均:初始化一个用于记录参数平方梯度的指数加权移动平均变量,通常初始化为零向量。

3计算梯度:计算当前位置的梯度。

4计算均方梯度的移动平均:计算参数平方梯度的指数加权移动平均,通常使用指数加权平均公式。

python 复制代码
moving_average = beta * moving_average + (1 - beta) * gradient^2

其中,beta 是用于计算指数加权平均的超参数

5更新参数:根据均方梯度的移动平均和学习率,更新模型的参数。

python 复制代码
parameter = parameter - learning_rate * gradient / sqrt(moving_average + epsilon)

其中,epsilon 是一个小的常数,防止分母为零。

6重复迭代:重复执行步骤 3 到 5,直到达到预定的迭代次数(epochs)或收敛条件。

代码实现

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# 生成随机数据
np.random.seed(0)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)

# 添加偏置项
X_b = np.c_[np.ones((100, 1)), X]

# 初始化参数
theta = np.random.randn(2, 1)

# 学习率
learning_rate = 0.1

# RMSProp参数
beta = 0.9
epsilon = 1e-8
moving_average = np.zeros_like(theta)

# 迭代次数
n_iterations = 1000

# RMSProp优化
for iteration in range(n_iterations):
    gradients = 2 / 100 * X_b.T.dot(X_b.dot(theta) - y)
    moving_average = beta * moving_average + (1 - beta) * gradients**2
    theta = theta - learning_rate * gradients / np.sqrt(moving_average + epsilon)

# 绘制数据和拟合直线
plt.scatter(X, y)
plt.plot(X, X_b.dot(theta), color='red')
plt.xlabel('X')
plt.ylabel('y')
plt.title('Linear Regression with RMSProp Optimization')
plt.show()

print("Intercept (theta0):", theta[0][0])
print("Slope (theta1):", theta[1][0])
相关推荐
User_芊芊君子1 分钟前
CANN大模型加速核心ops-transformer全面解析:Transformer架构算子的高性能实现与优化
人工智能·深度学习·transformer
格林威1 分钟前
Baumer相机玻璃制品裂纹自动检测:提高透明材质检测精度的 6 个关键步骤,附 OpenCV+Halcon 实战代码!
人工智能·opencv·视觉检测·材质·工业相机·sdk开发·堡盟相机
点云SLAM2 分钟前
Concentrate 英文单词学习
人工智能·英文单词学习·雅思备考·concentrate·集中·浓缩 / 集中物
哈__3 分钟前
CANN轻量化开发实战:快速上手与多场景适配
人工智能
木梯子4 分钟前
全球开发者疯抢的OpenClaw出中文版了!Molili让你一键使用无需部署
人工智能
乂爻yiyao5 分钟前
Vibe Coding 工程化实践
人工智能·ai
lili-felicity9 分钟前
CANN批处理优化技巧:从动态批处理到流水线并行
人工智能·python
一枕眠秋雨>o<16 分钟前
算子之力:解码CANN ops-nn如何重塑昇腾AI计算范式
人工智能
AI科技17 分钟前
原创音乐人运用AI编曲软件,编曲怎么配和弦的声音
人工智能
dazzle19 分钟前
机器学习算法原理与实践-入门(三):使用数学方法实现KNN
人工智能·算法·机器学习