多层感知机

知识点

python 复制代码
torch.zeros_like(X)#是一个PyTorch张量函数,用于创建一个与张量X具有相同形状(shape)和数据类型(dtype)的零张量(全为0的张量)。

ctrl 进去找不认识的参数
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
# train_iter, test_iter = data.DataLoader(mnist_train, batch_size, shuffle=True,
#                             num_workers=get_dataloader_workers()),
#                         data.DataLoader(mnist_test, batch_size, shuffle=False,
#                             num_workers=get_dataloader_workers())


#    mnist_train = torchvision.datasets.FashionMNIST(
        root="../data", train=True, transform=trans, download=True)
#    mnist_test = torchvision.datasets.FashionMNIST(
        root="../data", train=False, transform=trans, download=True)

    trans = transforms.Compose(trans)

ReLU函数的定义为relu(x) = max(0, x),即对于输入x,如果x小于等于0,则输出为0,否则输出为x本身。

多层感知机

python 复制代码
import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

# 实现一个具有单隐藏层的多层感知机,它包含256个隐藏单元
num_inputs, num_outputs, num_hiddens = 784, 10, 256 # 输入、输出是数据决定的,256是调参自己决定的
W1 = nn.Parameter(torch.randn(num_inputs, num_hiddens, requires_grad=True))
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(num_hiddens, num_outputs, requires_grad=True))
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))
params = [W1,b1,W2,b2]

# 实现 ReLu 激活函数
def relu(X):
    a = torch.zeros_like(X) # 数据类型、形状都一样,但是值全为 0
    return torch.max(X,a)

# 实现模型
def net(X):
    #print("X.shape:",X.shape)
    X = X.reshape((-1, num_inputs)) # -1为自适应的批量大小
    #print("X.shape:",X.shape)
    H = relu(X @ W1 + b1)
    #print("H.shape:",H.shape)
    #print("W2.shape:",W2.shape)
    return (H @ W2 + b2)

# 损失
loss = nn.CrossEntropyLoss() # 交叉熵损失

# 多层感知机的训练过程与softmax回归的训练过程完全一样
num_epochs ,lr = 10, 0.01
updater = torch.optim.SGD(params, lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)

多层感知机-框架

python 复制代码
import torch
from torch import nn
from d2l import torch as d2l

# 隐藏层包含256个隐藏单元,并使用了ReLU激活函数
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 10))


def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0, )


net.apply(init_weights)

# 训练过程
batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss()
trainer = torch.optim.SGD(net.parameters(), lr=lr)

train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
相关推荐
mit6.8242 分钟前
[1Prompt1Story] 注意力机制增强 IPCA | 去噪神经网络 UNet | U型架构分步去噪
人工智能·深度学习·神经网络
挽淚19 分钟前
(小白向)什么是Prompt,RAG,Agent,Function Calling和MCP ?
人工智能·程序员
Jina AI26 分钟前
回归C++: 在GGUF上构建高效的向量模型
人工智能·算法·机器学习·数据挖掘·回归
Coovally AI模型快速验证31 分钟前
YOLO、DarkNet和深度学习如何让自动驾驶看得清?
深度学习·算法·yolo·cnn·自动驾驶·transformer·无人机
科大饭桶1 小时前
昇腾AI自学Day2-- 深度学习基础工具与数学
人工智能·pytorch·python·深度学习·numpy
什么都想学的阿超1 小时前
【大语言模型 02】多头注意力深度剖析:为什么需要多个头
人工智能·语言模型·自然语言处理
努力还债的学术吗喽2 小时前
2021 IEEE【论文精读】用GAN让音频隐写术骗过AI检测器 - 对抗深度学习的音频信息隐藏
人工智能·深度学习·生成对抗网络·密码学·音频·gan·隐写
明道云创始人任向晖2 小时前
20个进入实用阶段的AI应用场景(零售电商业篇)
人工智能·零售
数据智研2 小时前
【数据分享】大清河(大庆河)流域上游土地利用
人工智能
聚客AI2 小时前
🔷告别天价算力!2025性价比最高的LLM私有化训练路径
人工智能·llm·掘金·日新计划