排序算法:选择排序

选择排序的思想是:双重循环遍历数组,每经过一轮比较,找到最小元素的下标,将其交换至首位。

java 复制代码
public static void selectionSort(int[] arr) {
    int minIndex;
    for (int i = 0; i < arr.length - 1; i++) {
        minIndex = i;
        for (int j = i + 1; j < arr.length; j++) {
            if (arr[minIndex] > arr[j]) {
                // 记录最小值的下标
                minIndex = j;
            }
        }
        // 将最小元素交换至首位
        int temp = arr[i];
        arr[i] = arr[minIndex];
        arr[minIndex] = temp;
    }
}

选择排序就好比第一个数字站在擂台上,大吼一声:"还有谁比我小?"。剩余数字来挨个打擂,如果出现比第一个数字小的数,则新的擂主产生。每轮打擂结束都会找出一个最小的数,将其交换至首位。经过 n-1 轮打擂,所有的数字就按照从小到大排序完成了。

现在让我们思考一下,冒泡排序和选择排序有什么异同?

相同点:

  • 都是两层循环,时间复杂度都为 O(n²);
  • 都只使用有限个变量,空间复杂度 O(1);

不同点:

  • 冒泡排序在比较过程中就不断交换;而选择排序增加了一个变量保存最小值 / 最大值的下标,遍历完成后才交换,减少了交换次数。

事实上,冒泡排序和选择排序还有一个非常重要的不同点,那就是:

  • 冒泡排序法是稳定的,选择排序法是不稳定的。

想要理解这点不同,我们先要知道什么是排序算法的稳定性。

排序算法的稳定性

假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i] = r[j],且 r[i] 在 r[j] 之前,而在排序后的序列中,r[i] 仍在 r[j] 之前,则称这种排序算法是稳定的;否则称为不稳定的。

理解了稳定性的定义后,我们就能分析出:冒泡排序中,只有左边的数字大于右边的数字时才会发生交换,相等的数字之间不会发生交换,所以它是稳定的。

而选择排序中,最小值和首位交换的过程可能会破坏稳定性。比如数列:[2, 2, 1],在选择排序中第一次进行交换时,原数列中的两个 2 的相对顺序就被改变了,因此,我们说选择排序是不稳定的。

那么排序算法的稳定性有什么意义呢?其实它只在一种情况下有意义:当要排序的内容是一个对象的多个属性,且其原本的顺序存在意义时,如果我们需要在二次排序后保持原有排序的意义,就需要使用到稳定性的算法。

举个例子,如果我们要对一组商品排序,商品存在两个属性:价格和销量。当我们按照价格从高到低排序后,要再按照销量对其排序,这时,如果要保证销量相同的商品仍保持价格从高到低的顺序,就必须使用稳定性算法。

当然,算法的稳定性与具体的实现有关。在修改比较的条件后,稳定性排序算法可能会变成不稳定的。如冒泡算法中,如果将「左边的数大于右边的数,则交换」这个条件修改为「左边的数大于或等于右边的数,则交换」,冒泡算法就变得不稳定了。

同样地,不稳定排序算法也可以经过修改,达到稳定的效果。思考一下,选择排序算法如何实现稳定排序呢?

实现的方式有很多种,这里给出一种最简单的思路:新开一个数组,将每轮找出的最小值依次添加到新数组中,选择排序算法就变成稳定的了。

但如果将寻找最小值的比较条件由arr[minIndex] > arr[j]修改为arr[minIndex] >= arr[j],即使新开一个数组,选择排序算法依旧是不稳定的。所以分析算法的稳定性时,需要结合具体的实现逻辑才能得出结论,我们通常所说的算法稳定性是基于一般实现而言的。

二元选择排序

选择排序算法也是可以优化的,既然每轮遍历时找出了最小值,何不把最大值也顺便找出来呢?这就是二元选择排序的思想。

使用二元选择排序,每轮选择时记录最小值和最大值,可以把数组需要遍历的范围缩小一倍。

java 复制代码
public static void selectionSort2(int[] arr) {
    int minIndex, maxIndex;
    // i 只需要遍历一半
    for (int i = 0; i < arr.length / 2; i++) {
        minIndex = i;
        maxIndex = i;
        for (int j = i + 1; j < arr.length - i; j++) {
            if (arr[minIndex] > arr[j]) {
                // 记录最小值的下标
                minIndex = j;
            }
            if (arr[maxIndex] < arr[j]) {
                // 记录最大值的下标
                maxIndex = j;
            }
        }
        // 如果 minIndex 和 maxIndex 都相等,那么他们必定都等于 i,且后面的所有数字都与 arr[i] 相等,此时已经排序完成
        if (minIndex == maxIndex) break;
        // 将最小元素交换至首位
        int temp = arr[i];
        arr[i] = arr[minIndex];
        arr[minIndex] = temp;
        // 如果最大值的下标刚好是 i,由于 arr[i] 和 arr[minIndex] 已经交换了,所以这里要更新 maxIndex 的值。
        if (maxIndex == i) maxIndex = minIndex;
        // 将最大元素交换至末尾
        int lastIndex = arr.length - 1 - i;
        temp = arr[lastIndex];
        arr[lastIndex] = arr[maxIndex];
        arr[maxIndex] = temp;
    }
}

我们使用 minIndex 记录最小值的下标,maxIndex 记录最大值的下标。每次遍历后,将最小值交换到首位,最大值交换到末尾,就完成了排序。

由于每一轮遍历可以排好两个数字,所以最外层的遍历只需遍历一半即可。

二元选择排序中有一句很重要的代码,它位于交换最小值和交换最大值的代码中间:

java 复制代码
if (maxIndex == i) maxIndex = minIndex;

这行代码的作用处理了一种特殊情况:如果最大值的下标等于 i,也就是说 arr[i] 就是最大值,由于 arr[i] 是当前遍历轮次的首位,它已经和 arr[minIndex] 交换了,所以最大值的下标需要跟踪到 arr[i] 最新的下标 minIndex。

二元选择排序的效率

在二元选择排序算法中,数组需要遍历的范围缩小了一倍。那么这样可以使选择排序的效率提升一倍吗?

从代码可以看出,虽然二元选择排序最外层的遍历范围缩小了,但 for 循环内做的事情翻了一倍。也就是说二元选择排序无法将选择排序的效率提升一倍。但实测会发现二元选择排序的速度确实比选择排序的速度快一点点,它的速度提升主要是因为两点:

  • 在选择排序的外层 for 循环中,i 需要加到 arr.length - 1 ,二元选择排序中 i 只需要加到 arr.length / 2;
  • 在选择排序的内层 for 循环中,j 需要加到 arr.length ,二元选择排序中 j 只需要加到 arr.length - i;

我们不妨发扬一下极客精神,一起来做一个统计实验:

java 复制代码
public class TestSelectionSort {
    public static void selectionSort(int[] arr) {
        int countI = 0;
        int countJ = 0;
        int countArr = 0;
        int minIndex;
        countI++;
        for (int i = 0; i < arr.length - 1; i++, countI++) {
            minIndex = i;
            countJ++;
            for (int j = i + 1; j < arr.length; j++, countJ++) {
                if (arr[minIndex] > arr[j]) {
                    // 记录最小值的下标
                    minIndex = j;
                }
                countArr++;
            }
            // 将最小元素交换至首位
            int temp = arr[i];
            arr[i] = arr[minIndex];
            arr[minIndex] = temp;
        }
        int count = countI + countJ + countArr;
        System.out.println("selectionSort: countI = " + countI + ", countJ = " + countJ + ", countArr = " + countArr + ", count = " + count);
    }

    public static void selectionSort2(int[] arr) {
        int countI = 0;
        int countJ = 0;
        int countArr = 0;
        int minIndex, maxIndex;
        countI++;
        // i 只需要遍历一半
        for (int i = 0; i < arr.length / 2; i++, countI++) {
            minIndex = i;
            maxIndex = i;
            countJ++;
            for (int j = i + 1; j < arr.length - i; j++, countJ++) {
                if (arr[minIndex] > arr[j]) {
                    // 记录最小值的下标
                    minIndex = j;
                }
                if (arr[maxIndex] < arr[j]) {
                    // 记录最大值的下标
                    maxIndex = j;
                }
                countArr += 2;
            }
            // 如果 minIndex 和 maxIndex 都相等,那么他们必定都等于 i,且后面的所有数字都与 arr[i] 相等,此时已经排序完成
            if (minIndex == maxIndex) break;
            // 将最小元素交换至首位
            int temp = arr[i];
            arr[i] = arr[minIndex];
            arr[minIndex] = temp;
            // 如果最大值的下标刚好是 i,由于 arr[i] 和 arr[minIndex] 已经交换了,所以这里要更新 maxIndex 的值。
            if (maxIndex == i) maxIndex = minIndex;
            // 将最大元素交换至末尾
            int lastIndex = arr.length - 1 - i;
            temp = arr[lastIndex];
            arr[lastIndex] = arr[maxIndex];
            arr[maxIndex] = temp;
        }
        int count = countI + countJ + countArr;
        System.out.println("selectionSort2: countI = " + countI + ", countJ = " + countJ + ", countArr = " + countArr + ", count = " + count);
    }
}

在这个类中,我们用 countI 记录 i 的比较次数,countJ 记录 j 的比较次数,countArr 记录 arr 的比较次数,count 记录总比较次数。

测试用例:

java 复制代码
import org.junit.Test;

import java.util.ArrayList;

public class UnitTest {
    @Test
    public void test() {
        ArrayList<Integer> list = new ArrayList<>();
        for (int i = 0; i <= 1000; i++) {
            // ArrayList 转 int[]
            int[] arr = list.stream().mapToInt(Integer::intValue).toArray();
            System.out.println("*** arr.length = " + arr.length + " ***");
            TestSelectionSort.selectionSort(arr);
            TestSelectionSort.selectionSort2(arr);
            list.add(i);
        }
    }
}

这里列出部分测试结果:

可以看到,二元选择排序中, arr 数组的比较次数甚至略高于选择排序的比较次数,整体是相差无几的。只是 i 和 j 的比较次数较少,正是在这两个地方提高了效率。

并且,在二元选择排序中,我们可以做一个剪枝优化,当 minIndex == maxIndex 时,说明后续所有的元素都相等,就好比班上最高的学生和最矮的学生一样高,说明整个班上的人身高都相同了。此时已经排序完成,可以提前跳出循环。通过这个剪枝优化,对于相同元素较多的数组,二元选择排序的效率将远远超过选择排序。

和选择排序一样,二元选择排序也是不稳定的。

相关推荐
zhentiya6 分钟前
微积分第五版课后习题答案详解PDF电子版 赵树嫄
算法·pdf
luky!35 分钟前
算法--解决熄灯问题
python·算法
鸽鸽程序猿41 分钟前
【算法】【优选算法】二分查找算法(下)
java·算法·二分查找算法
_OLi_42 分钟前
力扣 LeetCode 150. 逆波兰表达式求值(Day5:栈与队列)
算法·leetcode·职场和发展
远望清一色1 小时前
基于MATLAB身份证号码识别
开发语言·图像处理·算法·matlab
醉颜凉2 小时前
【NOIP提高组】潜伏者
java·c语言·开发语言·c++·算法
lapiii3582 小时前
图论-代码随想录刷题记录[JAVA]
java·数据结构·算法·图论
Dontla3 小时前
Rust泛型系统类型推导原理(Rust类型推导、泛型类型推导、泛型推导)为什么在某些情况必须手动添加泛型特征约束?(泛型trait约束)
开发语言·算法·rust
Ttang233 小时前
Leetcode:118. 杨辉三角——Java数学法求解
算法·leetcode