大数据-玩转数据-Flink时间滚动动窗口

一、说明

时间窗口包含一个开始时间戳(包括)和结束时间戳(不包括), 这两个时间戳一起限制了窗口的尺寸.

在代码中, Flink使用TimeWindow这个类来表示基于时间的窗口. 这个类提供了key查询开始时间戳和结束时间戳的方法, 还提供了针对给定的窗口获取它允许的最大时间戳的方法(maxTimestamp())

时间窗口又分3种:滚动窗口、滑动窗口、会话窗口。

二、思路

滚动窗口有固定的大小, 窗口与窗口之间不会重叠也没有缝隙.比如,如果指定一个长度为5分钟的滚动窗口, 当前窗口开始计算, 每5分钟启动一个新的窗口.

滚动窗口能将数据流切分成不重叠的窗口,每一个事件只能属于一个窗口

1.时间间隔可以通过: Time.milliseconds(x), Time.seconds(x), Time.minutes(x),等等来指定.

2.我们传递给window函数的对象叫窗口分配器.

三、数据准备

准备一个WaterSensor类方便演示

java 复制代码
package com.lyh.bean;

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

@Data
@NoArgsConstructor
@AllArgsConstructor
public class WaterSensor {
    private String id;
    private Long ts;
    private Integer vc;
}

四、代码

java 复制代码
package com.lyh.flink07;

import com.lyh.bean.WaterSensor;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;

import java.util.ArrayList;
import java.util.List;

public class Window_s {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        env.socketTextStream("hadoop100",9999)
                .map(line -> {
                    String[] data = line.split(",");
                    return new WaterSensor(
                            data[0],
                            Long.valueOf(data[1]),
                            Integer.valueOf(data[2])
                    );
                })
                .keyBy(WaterSensor::getId)
                .window(TumblingProcessingTimeWindows.of(Time.seconds(5)))
                .process(new ProcessWindowFunction<WaterSensor, String,String, TimeWindow>() {
                    @Override
                    public void process(String key,
                                        Context ctx,
                                        Iterable<WaterSensor> elements,
                                        Collector<String> out) throws Exception {
                    List<WaterSensor> list  = toList(elements);
                        long starttime = ctx.window().getStart();
                        long endtime = ctx.window().getEnd();

                        out.collect("窗口:" + starttime + "  " + endtime + "  " + "key:" + key + "  " + "list:" + list);

                    }
                }).print();
        env.execute();
    }

    private static <T>List<T> toList(Iterable<T> it) {
        List<T>  list = new ArrayList<>();
        for (T t : it) {
            list.add(t);
            
        }
        return list;
    }
}

五、结果

在hadoop100 服务器

输入nc -lk 999

消费结果:

相关推荐
shinelord明15 分钟前
【大数据技术实战】Kafka 认证机制全解析
大数据·数据结构·分布式·架构·kafka
文火冰糖的硅基工坊1 小时前
[创业之路-702]:“第三次”与“第四次工业革命”的范式跃迁
大数据·人工智能·科技·嵌入式硬件·架构·嵌入式·gpu
TDengine (老段)1 小时前
TDengine 数据函数 LN 用户手册
大数据·数据库·物联网·时序数据库·tdengine·涛思数据
TDengine (老段)4 小时前
连接 TDengine 遇到报错 “failed to connect to server, reason: Connection refused” 怎么办?
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
攻城狮7号4 小时前
AI+大数据时代:如何从架构到生态重构时序数据库的价值?
大数据·人工智能·时序数据库·apache iotdb·sql大模型
TDengine (老段)4 小时前
内网搭建邮件服务,打通 TDengine IDMP 通知途径
大数据·时序数据库·tdengine
AI数据皮皮侠5 小时前
中国博物馆数据
大数据·人工智能·python·深度学习·机器学习
JAVA学习通5 小时前
SpringOJ竞赛项目----组件ElasticSearch
大数据·elasticsearch·搜索引擎
武子康6 小时前
大数据-129 - Flink CEP详解:实时流式复杂事件处理(Complex Event Processing)全解析
大数据·后端·flink
视***间6 小时前
视程空间Pandora:终端算力破晓,赋能边缘计算未
大数据·人工智能·边缘计算·ai算力·视程空间