简介
数据仓库(Data Warehouse)简称DW或DWH,是数据库的一种概念上的升级,可以说是为满足新需求设计的一种新数据库,而这个数据库是需容纳更多的数据,更加庞大的数据集,从逻辑上讲数据仓库和数据库是没有什么区别的。
为企业所有级别的决策制定过程,提供所有类型数据支撑的战略集合,主要是用于数据挖掘和数据分析,以建立数据沙盘为基础,为消灭消息孤岛和支持决策为目的而创建的。
特点
面向主题
不可更新
随时间变化(数据库的数据时限一般是60 ~ 90天,而数据仓库的数据一般是5年~10年)
数据模型
系统记录域:数据仓库业务数据存储区,保证数据的一致性。
内部管理域:用于内部管理的元数据,统一的元数据管理。
汇总域:这里的数据来自系统记录域的汇总,保证分析域的主题分析性能,满足部分报表查询。
分析域:各个业务部分的具体主题业务分析,可以单独存储在相应的数据集市中。
反馈域:用于相应的前端的反馈数据,视业务的需要设置这个域。
维度和指标(度量)
维度就是数据的观察角度,即从哪个角度去分析问题,看待问题。比如时间维度上每一个独立的日期或地域,因此统计时,可以把维度相同记录的聚合在一起,应用聚合函数做累加、均值、最大值、最小值等聚合计算。
指标,即度量,就是从维度的基础上去衡算这个结果的值。
数据分层
一、数据运营层:ODS(Operational Data Store)
"面向主题的"数据运营层,也叫ODS层,是最接近数据源中数据的一层,数据源中的数据,经过抽取、洗净、传输,也就说传说中的 ETL 之后,装入本层。本层的数据,总体上大多是按照源头业务系统的分类方式而分类的。
一般来讲,为了考虑后续可能需要追溯数据问题,因此对于这一层就不建议做过多的数据清洗工作,原封不动地接入原始数据即可,至于数据的去噪、去重、异常值处理等过程可以放在后面的DWD层来做。
二、数据仓库层:DW(Data Warehouse)
数据仓库层是我们在做数据仓库时要核心设计的一层,在这里,从 ODS 层中获得的数据按照主题建立各种数据模型。DW层又细分为 DWD(Data Warehouse Detail)层、DWM(Data WareHouse Middle)层和DWS(Data WareHouse Servce)层。
- 数据明细层:DWD(Data Warehouse Detail)
该层一般保持和ODS层一样的数据粒度,并且提供一定的数据质量保证。同时,为了提高数据明细层的易用性,该层会采用一些维度退化手法,将维度退化至事实表中,减少事实表和维表的关联。
另外,在该层也会做一部分的数据聚合,将相同主题的数据汇集到一张表中,提高数据的可用性,后文会举例说明。
- 数据中间层:DWM(Data WareHouse Middle)
该层会在DWD层的数据基础上,对数据做轻度的聚合操作,生成一系列的中间表,提升公共指标的复用性,减少重复加工。
直观来讲,就是对通用的核心维度进行聚合操作,算出相应的统计指标。
- 数据服务层:DWS(Data WareHouse Servce)
又称数据集市或宽表。按照业务划分,如流量、订单、用户等,生成字段比较多的宽表,用于提供后续的业务查询,OLAP分析,数据分发等。
一般来讲,该层的数据表会相对比较少,一张表会涵盖比较多的业务内容,由于其字段较多,因此一般也会称该层的表为宽表。
在实际计算中,如果直接从DWD或者ODS计算出宽表的统计指标,会存在计算量太大并且维度太少的问题,因此一般的做法是,在DWM层先计算出多个小的中间表,然后再拼接成一张DWS的宽表。由于宽和窄的界限不易界定,也可以去掉DWM这一层,只留DWS层,将所有的数据在放在DWS亦可。
三、数据应用层:APP(Application)
在这里,主要是提供给数据产品和数据分析使用的数据,一般会存放在 ES、PostgreSql、Redis等系统中供线上系统使用,也可能会存在 Hive 或者 Druid 中供数据分析和数据挖掘使用。比如我们经常说的报表数据,一般就放在这里。
四、维表层(Dimension)
最后补充一个维表层,维表层主要包含两部分数据:
高基数维度数据:一般是用户资料表、商品资料表类似的资料表。数据量可能是千万级或者上亿级别。
低基数维度数据:一般是配置表,比如枚举值对应的中文含义,或者日期维表。数据量可能是个位数或者几千几万。
不同的层次中会用到什么计算引擎和存储系统
RDBMS(Relational Database Management System)
吐数
从能力范围来讲,我们希望80%需求由20%的表来支持。直接点讲,就是大部分(80%以上)的需求,都用DWS的表来支持就行,DWS支持不了的,就用DWM和DWD的表来支持,这些都支持不了的极少一部分数据需要从原始日志中捞取。结合第一点来讲的话就是:80%的需求,我们都希望以对应用很友好的方式来支持,而不是直接暴露给应用方原始日志。