机器学习之损失函数

深度学习中常用的损失函数多种多样,具体选择取决于任务类型和问题的性质。以下是一些常见的深度学习任务和相应的常用损失函数:

  1. 分类任务

    • 交叉熵损失函数(Cross-Entropy Loss):用于二分类和多类别分类任务,包括二元交叉熵(Binary Cross-Entropy)和多元交叉熵(Categorical Cross-Entropy)。

    • 对数损失函数(Log Loss):与交叉熵损失函数类似,通常用于二分类问题。

    • 带权重的交叉熵损失函数(Weighted Cross-Entropy Loss):适用于不平衡类别的分类任务,可以对不同类别的样本分配不同的权重。

    • Focal Loss:用于处理类别不平衡问题,可以调节对容易分类的样本和难以分类的样本的关注度。

  2. 回归任务

    • 均方误差损失函数(Mean Squared Error,MSE):用于回归问题,衡量模型的预测值与实际值之间的差异。

    • 平均绝对误差损失函数(Mean Absolute Error,MAE):也用于回归问题,衡量模型的预测值与实际值之间的绝对差异。

    • Huber损失函数:对均方误差和平均绝对误差的折中,对异常值不敏感。

    • Log-Cosh 损失函数:对均方误差和平均绝对误差的折中,对异常值不敏感,并具有平滑性。

  3. 物体检测任务

    • YOLO 损失函数:用于单阶段物体检测算法(如YOLO系列),包括位置损失、类别损失和置信度损失。

    • Faster R-CNN 损失函数:用于两阶段物体检测算法(如Faster R-CNN),包括区域建议网络(RPN)的分类损失和回归损失,以及目标检测网络(Fast R-CNN)的分类损失和回归损失。

  4. 语义分割任务

    • 交叉熵损失函数:通常用于像素级分类任务,每个像素被分类到不同的类别。

    • Dice 损失函数:用于语义分割,更适用于不平衡类别的情况。

  5. 生成对抗网络(GAN)任务

    • 生成器损失函数:通常使用对数似然损失(Log Likelihood Loss)或均方误差损失(MSE Loss)。

    • 判别器损失函数:通常使用二元交叉熵损失(Binary Cross-Entropy Loss)。

相关推荐
prinTao13 分钟前
【配置教程】新版OpenCV+Android Studio环境配置(4.11测试通过)
人工智能·opencv·android studio
海天一色y32 分钟前
Pycharm(二十)神经网络入门
人工智能·深度学习·神经网络
jndingxin35 分钟前
OpenCV CUDA模块设备层-----用于在 CUDA 核函数中访问纹理数据的一个封装类TexturePtr()
人工智能·opencv·计算机视觉
极光JIGUANG42 分钟前
GPTBots使用fetch-event-source实现SSE POST传参
人工智能
合方圆~小文1 小时前
20倍光学镜头怎么实现20+20倍数实现
数据库·人工智能·硬件工程
Coovally AI模型快速验证1 小时前
数据集分享 | 电力检测数据集,助力AI守护电网安全
人工智能·算法·安全·计算机视觉·目标跟踪
微信公众号:AI创造财富1 小时前
推荐轻量级文生视频模型(Text-to-Video)
python·深度学习·音视频
科技林总1 小时前
聚类分析:让数据自述群落的艺术
人工智能
Hcoco_me1 小时前
AI大模型初识(一):AI大模型的底层原理与技术演进
人工智能
通信与导航2 小时前
卫星通信链路预算之二:带宽和功带平衡
人工智能·信息与通信·射频工程