目录

机器学习之损失函数

深度学习中常用的损失函数多种多样,具体选择取决于任务类型和问题的性质。以下是一些常见的深度学习任务和相应的常用损失函数:

  1. 分类任务

    • 交叉熵损失函数(Cross-Entropy Loss):用于二分类和多类别分类任务,包括二元交叉熵(Binary Cross-Entropy)和多元交叉熵(Categorical Cross-Entropy)。

    • 对数损失函数(Log Loss):与交叉熵损失函数类似,通常用于二分类问题。

    • 带权重的交叉熵损失函数(Weighted Cross-Entropy Loss):适用于不平衡类别的分类任务,可以对不同类别的样本分配不同的权重。

    • Focal Loss:用于处理类别不平衡问题,可以调节对容易分类的样本和难以分类的样本的关注度。

  2. 回归任务

    • 均方误差损失函数(Mean Squared Error,MSE):用于回归问题,衡量模型的预测值与实际值之间的差异。

    • 平均绝对误差损失函数(Mean Absolute Error,MAE):也用于回归问题,衡量模型的预测值与实际值之间的绝对差异。

    • Huber损失函数:对均方误差和平均绝对误差的折中,对异常值不敏感。

    • Log-Cosh 损失函数:对均方误差和平均绝对误差的折中,对异常值不敏感,并具有平滑性。

  3. 物体检测任务

    • YOLO 损失函数:用于单阶段物体检测算法(如YOLO系列),包括位置损失、类别损失和置信度损失。

    • Faster R-CNN 损失函数:用于两阶段物体检测算法(如Faster R-CNN),包括区域建议网络(RPN)的分类损失和回归损失,以及目标检测网络(Fast R-CNN)的分类损失和回归损失。

  4. 语义分割任务

    • 交叉熵损失函数:通常用于像素级分类任务,每个像素被分类到不同的类别。

    • Dice 损失函数:用于语义分割,更适用于不平衡类别的情况。

  5. 生成对抗网络(GAN)任务

    • 生成器损失函数:通常使用对数似然损失(Log Likelihood Loss)或均方误差损失(MSE Loss)。

    • 判别器损失函数:通常使用二元交叉熵损失(Binary Cross-Entropy Loss)。

本文是转载文章,点击查看原文
如有侵权,请联系 xyy@jishuzhan.net 删除
相关推荐
阿坡RPA12 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户277844910499312 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心12 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI14 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c15 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得20515 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清15 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh16 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员16 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物16 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技