【滑动窗口】leetcode1004:最大连续1的个数

一.题目描述

最大连续1的个数

这道题要我们找最大连续1的个数,看到"连续"二字,我们要想到滑动窗口的方法。滑动窗口的研究对象是一个连续的区间,这个区间需要满足某个条件。那么本题要找的是怎样的区间呢?是一个通过翻转0后得到连续1的区间,而最多可以翻转k个字符。

故要找的是包含0的个数不超过k的区间,因为如果超过k个0,即使经过翻转,该区间的1也还是不连续。

题意转化过来后,本题便不再困难。

二.思路分析

滑动窗口是在暴力解法的基础上优化过来的。本题的暴力解法就是两层for循环枚举所有的区间,找出满足条件的区间,通过比较得到最长的区间长度,结果就是数组中连续1的最大个数。

cpp 复制代码
class Solution {
public:
    int longestOnes(vector<int>& nums, int k) 
    {
        int n = nums.size();
        int ret = 0;
        for (int left = 0; left < n; left++)
        {
            int zero = 0;//记录0的个数
            for (int right = left; right < n; right++)
            {
                if (nums[right] == 0)
                {
                    zero++;
                }
                //如果0的个数已经超过k,right向后枚举的区间肯定也不符合要求
                if (zero > k)
                {
                    break;
                }
                ret = max(ret, right - left + 1);
            }
        }

        return ret;
    }
};

要想用滑动窗口,首先要证明right没有回退的必要

如图,right从left位置出发,依次向后枚举,到图中的位置[left, right]区间内0的个数大于k,停了下来。这说明[left, right - 1]区间是满足要求的。

按照暴力枚举策略,left向右移动一步,right回退到left位置。但最终right还是会回到原来的标记处。因为通过上一轮枚举,我们可知图中大括号标记的区间都是符合条件的,而right只有在区间不满足要求时才会停下。所以right没有必要回退,留在原地即可。

那么此时[left, right]区间是否符合条件呢?答案是不一定。因为可能left跳过的是一个1, 0的数量并没有减少,也有可能跳过了一个0,区间内刚好有k个0。

当区间符合条件时,我们让right继续向后移动,接下来的步骤就和上面一样了。当区间不符合条件时,right向后枚举的区间就更不满足了,所以我们让left继续向右移动,直到区间满足要求为止。

故判断应该是一个循环语句,不能简单地只判断一次。

三.代码编写

按照滑动窗口的模版,找到各个条件即可。当枚举的情况满足要求时应该更新结果。什么时候满足要求呢?

1.进窗口之后,zero>=k,符合要求

2.进窗口之后,zero<k,经过若干次出窗口操作后,zero=k ,满足要求

故更新结果应放在整个循环的最后面

cpp 复制代码
class Solution {
public:
    int longestOnes(vector<int>& nums, int k) {
        int n =nums.size();
        int zero = 0;//记录窗口内0的个数
        int left = 0, right = 0;
        int ret = 0;
        while (right < n)
        {
            //进窗口
            if (nums[right] == 0)
            {
                zero++;
            }

            //判断
            while (zero > k)
            {
                //出窗口
                if (nums[left] == 0)
                {
                    zero--;
                }
                left++;
            }

            //更新结果
            ret = max(ret, right - left + 1);

            right++;
        }
        
        return ret;
    }
};

时间复杂度O(n),相比于暴力枚举的O(n^2)提升了不少。

相关推荐
hetao173383723 分钟前
2025-12-12~14 hetao1733837的刷题笔记
数据结构·c++·笔记·算法
一直都在57228 分钟前
数据结构入门:时间复杂度与排序和查找
数据结构
鲨莎分不晴1 小时前
强化学习第五课 —— A2C & A3C:并行化是如何杀死经验回放
网络·算法·机器学习
搞科研的小刘选手2 小时前
【ISSN/ISBN双刊号】第三届电力电子与人工智能国际学术会议(PEAI 2026)
图像处理·人工智能·算法·电力电子·学术会议
拉姆哥的小屋2 小时前
从混沌到秩序:条件扩散模型在图像转换中的哲学与技术革命
人工智能·算法·机器学习
Sammyyyyy2 小时前
DeepSeek v3.2 正式发布,对标 GPT-5
开发语言·人工智能·gpt·算法·servbay
sin_hielo3 小时前
leetcode 2110
数据结构·算法·leetcode
Jay20021113 小时前
【机器学习】33 强化学习 - 连续状态空间(DQN算法)
人工智能·算法·机器学习
panzer_maus3 小时前
归并排序的简单介绍
java·数据结构·算法
摆烂且佛系3 小时前
B+树的“页分裂“机制
数据结构·b树